Find the value of m if 2x-1 is a factor of 8x4+4x^3-16x^2+10x+m.
Answers
Answered by
0
Answer:
-2
Step-by-step explanation:
Given polynomial p(x): 8x⁴ + 4x³ - 16x² + 10x + m
Given divisor g(x): 2x - 1
If 2x - 1 = 0, x = ½
It is given that p(x)/g(x) leaves no remainder.
That means p(½) = 0
8(½)⁴ + 4(½)³ - 16(½)² + 10(½) + m = 0
8(1/16) + 4(⅛) - 16(¼) + 10(½) + m = 0
½ + ½ - 4 + 5 + m = 0
1 - 4 + 5 = -m
m = -2
Answered by
1
Step-by-step explanation:
Solution
let
p(x) =8x^(4)+4x^(3)-16x^(2)+10x+m
<br> Since , 2x-1 is a factor of p (x) then put
p((1)/(2))=0
<br>
therefore 8((1)/(2))^(4)+4((1)/(2))^(3)-16((1)/(2))^(2)+10((1)/(2))+m=0
<br>
implies 8xx(1)/(16)+4xx(1)/(8) -16xx(1)/(4) +10((1)/(2))+m=0
<br>
implies (1)/(2) +(1)/(2)-4+5+m=0
<br>
implies 1+1+m=0
<br>
therefore m=-2
<br> hence , the value of m is -2.
Similar questions