Find the value of m if (x+2) is a factor of x^3 - 2mx^2 + 16
Answers
Answered by
10
(x+2) is a factor of x³ - 2mx² + 16
x+2 = 0 ----» x = -2
x³ - 2mx² + 16 = 0
(-2)³ - 2m(-2)² + 16 = 0
-8 - 2m(4) + 16 = 0
-8m + 8 = 0
8(-m+1) = 0
-m+1 = 0/8
-m + 1 = 0
m = 1
x+2 = 0 ----» x = -2
x³ - 2mx² + 16 = 0
(-2)³ - 2m(-2)² + 16 = 0
-8 - 2m(4) + 16 = 0
-8m + 8 = 0
8(-m+1) = 0
-m+1 = 0/8
-m + 1 = 0
m = 1
Answered by
2
Hi !
p(x) = x³ - 2mx² + 16
(x+2) is a factor of p(x)
so ,
p(-2) = 0
=====================
x³ - 2mx² + 16 = 0
(-2)³ - 2m(-2)² + 16 = 0
-8 - 2m(4) + 16 = 0
-8m + 8 = 0
8 (-m+1) = 0
-m+1 = 0
m = 1
p(x) = x³ - 2mx² + 16
(x+2) is a factor of p(x)
so ,
p(-2) = 0
=====================
x³ - 2mx² + 16 = 0
(-2)³ - 2m(-2)² + 16 = 0
-8 - 2m(4) + 16 = 0
-8m + 8 = 0
8 (-m+1) = 0
-m+1 = 0
m = 1
Similar questions