Math, asked by ShuchiRecites, 6 months ago

Find the value of m in terms of variables :)​

Attachments:

Answers

Answered by stephanie0812
1

Answer:

b=me

m=me

bm=yuo and me

Step-by-step explanation:

a no no te creas pinches pendejos lol

Answered by HèrøSk
8

Solution:-

 \large\sf \frac{bl - am}{bm + al}  =   { \frac{ - a - bm}{b - am} }  \\ \\\implies\large\sf( bl - am)(b - am) = ( - a - bm)(bm + al) \\ \implies\large\sf {b}^{2}l \cancel{- blam}\cancel{  - abm}  +  {a}^{2} {m}^{2} =\cancel{  - abm }-  {a}^{2}l -  {b}^{2} {m}^{2} \cancel{- bmal  }   \\  \implies\large\sf b ^{2} l -  {a}^{2}  {m}^{2}  =  -  {a}^{2} l -  {b}^{2} {m}^{2}  \\ \implies\large\sf{b}^{2} l +  {b}^{2}  {m}^{2}  +  {a}^{2}  {m}^{2}  +  {a}^{2} l = 0 \\\implies\large\sf  {b}^{2} l +  {a}^{2} l +  {m}^{2} ( {b}^{2} +  {a}^{2}  )  = 0\\\implies\large\sf l( {b}^{2}  +  {a}^{2} ) =  -  {m}^{2} ( {b}^{2}  +  {a}^{2} ) \\\implies\large\sf l =   \frac{ -  {m}^{2}{{\cancel{( {b}^{2} }+  {a}^{2} )} }} {\cancel{( {b}^{2} +  {a}^{2} )} }  \\\implies\large\sf l =  -  {m}^{2}  \\\implies\large\sf l +  {m}^{2}  = 0 \\\implies\large\sf{m}^{2}  =  - l \\\implies\large\sf m =  \sqrt{l}  \: i \:  \:  \\\implies\large\sf (here \:" i" \: is \: an \: imaginary \: number)

Similar questions