Math, asked by kant4221, 1 month ago

find the value of m in the following 3m×3^6/3^-³=3^18​

Attachments:

Answers

Answered by Anonymous
19

Answer

  • The value of m = 9.

Given

  • A equation \tt\cfrac{{3}^{m} \times {3}^{6}}{ {3}^{ -3} }  = {3}^{18} .

To Find

  • The value of m.

Step By Step Explanation

In this question we have given a equation \tt\cfrac{{3}^{m} \times {3}^{6}}{ {3}^{ -3} }  =  {3}^{18} . We need to find the value of m. We can find the value of m by using exponential identities and by basic arithmetic.

So let's do it !!

Formula Used

  • \boxed{\tt{{a}^{m} \times {a}^{n} = {a}^{m + n}}}

  •  \boxed{ \tt{{a}^{- m}  = \cfrac{1}{ {a}^{m} }}}

  • \boxed{ \tt{\cfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}}}

Solution

 \longmapsto\tt\cfrac{ {3}^{m} \times {3}^{6}  }{ {3}^{ - 3} }  =  {3}^{18}  \\  \\ \longmapsto\tt\cfrac{ {3}^{m} \times {3}^{6}}{ \frac{1}{ {3}^{3}}}  =  {3}^{18}  \\  \\ \longmapsto\tt {3}^{m}  \times {3}^{6}  \times  {3}^{3}  =  {3}^{18}  \\  \\\longmapsto\tt  {3}^{m} \times  {3}^{6 + 3}  =  {3}^{18}  \\  \\ \longmapsto\tt {3}^{m}  \times  {3}^{9}  =  {3}^{18}  \\  \\\longmapsto\tt  {3}^{m}  =  \cfrac{ {3}^{18} }{ {3}^{9} } \\  \\ \longmapsto\tt {3}^{m}  =  {3}^{18 - 9}  \\  \\\longmapsto\tt  {3}^{m} =  {3}^{9}  \\  \\ \longmapsto\tt m = 9

Therefore, the value of m = 9.

__________________

More to Know

{ \tt{Law \: of \: Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\frac{1}{n}}

_____________________

Similar questions