Math, asked by sircarahana2005, 2 months ago

find the value of m in which the quadratic equation has real or equal roots: (m+5)x²-(2m+3)x+(m-1)=0

Answers

Answered by amansharma264
84

EXPLANATION.

Quadratic equation,

(m + 5)x² - (2m + 3)x + (m - 1) = 0.

As we know that,

D = Discriminant.  Or  b² - 4ac.

Equation has real and equal roots,

⇒ D = 0.

⇒ (2m + 3)² - 4(m + 5)(m - 1) = 0.

⇒ 4m² + 9 + 12m - 4[m² - m + 5m - 5] = 0.

⇒ 4m² + 9 + 12m - 4[m² + 4m - 5] = 0.

⇒ 4m² + 9 + 12m - 4m² - 16m + 20 = 0.

⇒ 9 + 12m - 16m + 20 = 0.

⇒ 29 - 4m = 0.

⇒ 4m = 29.

⇒  m = 29/4.

                                                                                                                         

MORE INFORMATION.

Quadratic expression.

A polynomial of degree two of the form ax² + bx + c (a ≠ 0) is called a quadratic expression in x.

The quadratic equation.

ax² + bx + c = 0 (a ≠ 0) has two roots, given by.

⇒ α = -b + √D/2a.

⇒ β = -b - √D/2a.

⇒ D = b² - 4ac.

Answered by mathdude500
19

Given Question :-

  • find the value of m in which the quadratic equation has real or equal roots: (m+5)x²-(2m+3)x+(m-1)=0

Answer

\begin{gathered}\begin{gathered}\bf \: Given \:  -   \begin{cases} &\sf{Quadratic \:  equation \: has \: real \: equal \: roots} \\ &\sf{(m + 5) {x}^{2}  - (2m + 3)x + (m - 1) = 0 } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  \: To \: Find   - \begin{cases} &\sf{the \: value \: of \: m}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

The given Quadratic equation is

 \rm :  \implies \:(m + 5) {x}^{2}  - (2m + 3)x + (m - 1) = 0

Now,

 \rm \:On  \: comparing \:  with \: a {x}^{2}  +bx  + c = 0 \: we \: get \:

 \rm :  \implies \:a \:  =  \: m \:  +  \: 5

 \rm :  \implies \:b \:  =  \:  -  \: (2m \:  +  \: 3)

 \rm :  \implies \:c \:  =  \: m \:  -  \: 1

Since, it is given that equation has real and equal roots.

 \rm :  \implies \:Discriminant \: (D) =  \: 0

 \rm :  \implies \: {b}^{2}  - 4ac = 0

 \rm :  \implies \: { \bigg( - (2m + 3) \bigg)}^{2}  - 4(m + 5)(m - 1) = 0

 \rm :  \implies \: {4m}^{2}  + 9  +  12m -4 ( {m}^{2}  - m + 5m - 5) = 0

 \rm :  \implies \:4 {m}^{2}  + 9  +  12m -  {4m }^{2}  - 16m + 20 = 0

 \rm :  \implies \: - 4m + 29 = 0

 \rm :  \implies \:m \:  =  \: \dfrac{29}{4}

Explore more :

Nature of roots of Quadratic Equation :-

The nature depends upon Discriminant, D. Three cases arises :

  • D>0: When D is positive, the equation will have two real and distinct roots. This means the graph of the equation will intersect x-axis at exactly two different points.

  • D = 0: When D is equal to zero, the equation will have two real and equal roots. This means the graph of the equation will intersect x-axis at exactly one point. 

  • D < 0: When D is negative, the equation will have no real roots. This means the graph of the equation will not intersect x-axis.

Similar questions