find the value of m when (m+1)X=3ky
Answers
Answered by
0
Answer:
(m+1)x=3ky+15=0
→5x+ky+5=0
→a1=(m+1),b1=3k,c1=15
→a=5,b2=k,c2=5
\begin{gathered} \implies \tt\frac{a1}{a2}=\frac{b1}{b2}=\frac{c1}{c2}\\ \implies \tt\frac{m+1}{5}=\frac{3k}{k}=\frac{15}{5}\end{gathered}
⟹
a2
a1
=
b2
b1
=
c2
c1
⟹
5
m+1
=
k
3k
=
5
15
Now finding the value of 【 "m"】
\begin{gathered}\implies \tt\frac{m+1}{5}=\frac{15}{5}\\ \implies\tt 5(m+1)=15×5\\ \implies\tt 5m+5=75 \\ \implies \tt m=\frac{70}{5}\\\implies\tt m=14 \\ \implies\tt \red{\underline{\fbox{m=14} }}\end{gathered}
⟹
5
m+1
=
5
15
⟹5(m+1)=15×5
⟹5m+5=75
⟹m=
5
70
⟹m=14
⟹
m=14
Similar questions