Math, asked by riya36311, 8 months ago

find the value of m when (m+1)X=3ky

Answers

Answered by adityaawaad1083
0

Answer:

(m+1)x=3ky+15=0

→5x+ky+5=0

→a1=(m+1),b1=3k,c1=15

→a=5,b2=k,c2=5

\begin{gathered} \implies \tt\frac{a1}{a2}=\frac{b1}{b2}=\frac{c1}{c2}\\ \implies \tt\frac{m+1}{5}=\frac{3k}{k}=\frac{15}{5}\end{gathered}

a2

a1

=

b2

b1

=

c2

c1

5

m+1

=

k

3k

=

5

15

Now finding the value of 【 "m"】

\begin{gathered}\implies \tt\frac{m+1}{5}=\frac{15}{5}\\ \implies\tt 5(m+1)=15×5\\ \implies\tt 5m+5=75 \\ \implies \tt m=\frac{70}{5}\\\implies\tt m=14 \\ \implies\tt \red{\underline{\fbox{m=14} }}\end{gathered}

5

m+1

=

5

15

⟹5(m+1)=15×5

⟹5m+5=75

⟹m=

5

70

⟹m=14

m=14

Similar questions