Math, asked by rabia1983, 4 months ago

find the value of n (-4)^n+2×(-4)^7=(-4)^4​

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Given:

  •  \rm {( - 4)}^{n + 2}  \times  {( - 4)}^{7}  =  {( - 4)}^{4}

To find:

  • The value of n.

Solution:

We have,

 \rm \implies {( - 4)}^{n + 2}  \times  {( - 4)}^{7}  =  {( - 4)}^{4}

 \rm \implies {( - 4)}^{n + 2 + 7} =  {( - 4)}^{4}  \:  \:  \:  \:  \blue{ \bigg( {x}^{a} \times  {x}^{b}  =  {x}^{a + b} \bigg)  }

 \rm \implies {( - 4)}^{n + 9} =  {( - 4)}^{4}  \:  \:  \:  \:  \blue{ \bigg( {x}^{a} \times  {x}^{b}  =  {x}^{a + b} \bigg)  }

Comparing base, we get,

 \rm \implies   n + 9=  4

 \rm \implies   n  =   4 - 9

 \rm \implies   n  = - 5

Hence, the value of n is -5.

Answer:

  • The value of n is -5.

Formulae To Know:

  •  \rm {x}^{a} \times  {x}^{b}  =  {x}^{a + b}
  •  \rm ({x}^{a})^{b}  =  {x}^{ab}
  •  \rm {x}^{0}  = 1 \:  \: (x \neq 0)
  •  \rm {x}^{y}  =  \dfrac{1}{ {x}^{ - y} }
  •  \rm \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}
  •  \sf \sqrt[y]{x}  =  {x}^{^{1}/_{y} }
Answered by BrainlyKingdom
3

\sf{\left(-4\right)^{n+2}\left(-4\right)^7=\left(-4\right)^4}

Apply Exponent Rule : \sf{a^b+a^c=a^{b+c}}

\to\sf{\left(-4\right)^{n+2+7}=\left(-4\right)^4}

If \sf{a^{f\left(x\right)}=a^{g\left(x\right)}}, then \sf{f\left(x\right)=g\left(x\right)}

\to\sf{n+2+7=4}

\to\sf{n+9=4}

Subtract 9 from Both Sides

\to\sf{n+9-9=4-9}

\to\sf{n=4-9}

\to\sf{n=-5}

Similar questions