Math, asked by okdeglurkar, 10 months ago

Find the value of n if 2^2n-1=1/8^n-3​

Answers

Answered by mysticd
3

 2^{2n-1} = \frac{1}{8^{n-3}}

 \implies 2^{2n-1} = \frac{1}{(2^{3})^{n-3}}

 \implies 2^{2n-1} = \frac{1}{2^{3(n-3)}}

 \implies 2^{2n-1} = 2^{-3(n-3)}

 \implies 2n-1 = -3(n-3)

 \boxed{\pink { Since, If \:a^m = a^n \implies m = n }}

 \implies 2n - 1 = -3n + 9

 \implies 2n + 3n = 9 + 1

 \implies  5n = 10

 \implies  n = \frac{10}{5}

 \implies  n = 2

Therefore.,

 \red { Value \:of \:n } \green { = 2 }

•••♪

Similar questions