Math, asked by aashikhokhani, 7 months ago

find the value of n if (3/4)^2n-5 = (27/64)^2-3n​

Answers

Answered by Nirupamhhadra
5

Answer:

please make me brainliest and follow me

Attachments:
Answered by mysticd
3

 Given \: \Big( \frac{3}{4}\Big)^{2n-5} = \Big( \frac{27}{64}\Big)^{2-3n}

 \implies \Big( \frac{3}{4}\Big)^{2n-5} = \Big( \frac{3^{3}}{4^{3}}\Big)^{2-3n}

 \implies \Big( \frac{3}{4}\Big)^{2n-5} = \Big( \frac{3}{4}\Big)^{3(2-3n)}

 \boxed{ \pink{ \because \frac{x^{n}}{y^{n}} = \big( \frac{x}{y}\big)^{n} }}

 \implies \Big( \frac{3}{4}\Big)^{2n-5} = \Big( \frac{3}{4}\Big)^{6 -9n)}

 \implies 2n - 5 = 6 - 9n

 \boxed{\blue{ If \: a^{m} = a^{n} \implies m = n }}

 \implies 2n + 9n = 6 + 5

 \implies 11n = 11

 \implies n = \frac{11}{11}

 \implies n = 1

Therefore.,

 \red{ Value \: of\: n }\green { = 1 }

•••♪

Similar questions