Math, asked by diporusvincy1479, 9 days ago

find the value of n if 8^n + 8^n+1= 72​

Answers

Answered by user0888
28

\large\text{\underline{Exponent laws(Integers/Rationals/Reals)}}

\begin{gathered}\boxed{\begin{minipage}{8 cm}\underline{Laws of exponents(Integer exponents)} \\ \\For $ a\neq0 $ and $ b\neq0 $ and integers $ x $ and $ y $, \\ \\\bigstar a^{0}=1 $ and $ a^{-n}=\dfrac{1}{a^{n}} $\\ \\ \bullet a^{x} \times a^{y}=a^{x+y} \\ \\\bullet {a}^{x} \div {a}^{y}={a}^{x-y} \\ \\\bullet ({a}^{x})^{y} =a^{xy} \\ \\\bullet (ab)^{x}=a^{x}b^{x} $\end{minipage}}\end{gathered}

\begin{gathered}\boxed{\begin{minipage}{8 cm}\underline{Laws of exponents(Rational exponents)} \\ \\For $ a\neq0 $ and $ b\neq0 $ and rationals $ r $ and $ s $, \\ \\$ \bigstar a^{\frac{1}{n}}=\sqrt[n]{a}$ and $ a^{\frac{m}{n}}=\sqrt[n]{a^{m}} $\\ \\\bullet a^{r} \times a^{s}=a^{r+s} \\ \\\bullet {a}^{r} \div {a}^{s}={a}^{r-s} \\ \\\bullet ({a}^{r})^{s} =a^{rs} \\ \\\bullet (ab)^{r}=a^{r}b^{r} $\end{minipage}}\end{gathered}

\begin{gathered}\boxed{\begin{minipage}{8 cm}\underline{Laws of exponents(Real exponents)} \\ \\For $ a\neq0 $ and $ b\neq0 $ and reals $ x $ and $ y $, \\ \\$ \bullet a^{x} \times a^{y}=a^{x+y} \\ \\\bullet {a}^{x} \div {a}^{y}={a}^{x-y} \\ \\\bullet ({a}^{x})^{y} =a^{xy} \\ \\\bullet (ab)^{x}=a^{x}b^{x} $\end{minipage}}\end{gathered}

\large\text{\underline{Solution}}

We suppose n as a real number.

By exponent laws,

\cdots\longrightarrow 8^{n+1}=8\cdot8^{n}

The given equation is

\cdots\longrightarrow 8^{n}+8\cdot 8^{n}=72

\cdots\longrightarrow 9\cdot 8^{n}=72

\cdots\longrightarrow 8^{n}=8

\cdots\longrightarrow n=1

\large\text{\underline{Answer}}

n=1 is the only real solution to this equation.

Answered by Utkarshyt
0

Answer:

n= 1

Step-by-step explanation:

Solution

We suppose nn as a real number.

By exponent laws,

\cdots\longrightarrow 8^{n+1}=8\cdot8^{n}⋯⟶8

n+1

=8⋅8

n

The given equation is

\cdots\longrightarrow 8^{n}+8\cdot 8^{n}=72⋯⟶8

n

+8⋅8

n

=72

\cdots\longrightarrow 9\cdot 8^{n}=72⋯⟶9⋅8

n

=72

\cdots\longrightarrow 8^{n}=8⋯⟶8

n

=8

\cdots\longrightarrow n=1⋯⟶n=1

\large\text{\underline{Answer}}

Answer

n=1n=1 is the only real solution to this equation.

Similar questions