Math, asked by prajwaldeshmukh05, 6 hours ago

Find the value of n, if P(n,2)=3.c(n,3).

Answers

Answered by pulakmath007
0

SOLUTION

GIVEN

P(n,2) = 3.C(n,3)

TO DETERMINE

The value of n

EVALUATION

Here it is given that

P(n,2) = 3.C(n,3)

\displaystyle \sf{ \implies  {}^{n} P_2 = 3. {}^{n} C_3}

\displaystyle \sf{ \implies   \frac{n!}{(n - 2)!} = 3 \times \frac{n!}{(n - 3)!3!}  }

\displaystyle \sf{ \implies   \frac{1}{(n - 2)!} = 3 \times \frac{1}{(n - 3)!3!}  }

\displaystyle \sf{ \implies   \frac{(n - 3)!}{(n - 2)!} =  \frac{3}{3!}  }

\displaystyle \sf{ \implies   \frac{(n - 2)!}{(n - 3)!} =  \frac{3!}{3}  }

\displaystyle \sf{ \implies   \frac{(n - 2) \times (n - 3)!}{(n - 3)!} =  \frac{3 \times 2}{3}  }

\displaystyle \sf{ \implies   (n - 2)  = 2  }

\displaystyle \sf{ \implies   n   = 4  }

FINAL ANSWER

Hence the required value of n = 4

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 7. 5pr = 7pr – 1, then find r.(question based on permutation and combination chapter)

https://brainly.in/question/26877723

2. If nPr = 3024 and nCr = 126 then find n and r.

https://brainly.in/question/29044585

Similar questions