find the value of n,if (sin 1)(sin 3)(sin 5)(sin 7).....(sin 89) =1/2n
Answers
Answered by
11
This question is related to trignometric functions , in math they are usually the functions of the angles. Here we would be using trignometric identities, they are generally equalities.
Now for the value of 'n' we have the following solution:
= sin1. sin2. sin3. sin4. sin5. sin 7...sin88. sin89/Sin 2.sin4.sin6.. sin88
=(sin1.sin89).(sin2.sin88).(sin3.sin87).(sin4.sin86)...(sin44.sin46).(sin45) / (sin2.sin4.sin6.sin8...sin88)
=(sin1 .cos1).(sin2.cos2).(sin3.cos3).(sin4.cos4)....(sin44.cos44)..sin45 / 2^44.sin2.sin4.sin6.sin8..sin88
=sin 45/2^44
Thus,
=1/(√2)*(2^44)
Hence the value of n will be 89/2 for the above equation.
Now for the value of 'n' we have the following solution:
= sin1. sin2. sin3. sin4. sin5. sin 7...sin88. sin89/Sin 2.sin4.sin6.. sin88
=(sin1.sin89).(sin2.sin88).(sin3.sin87).(sin4.sin86)...(sin44.sin46).(sin45) / (sin2.sin4.sin6.sin8...sin88)
=(sin1 .cos1).(sin2.cos2).(sin3.cos3).(sin4.cos4)....(sin44.cos44)..sin45 / 2^44.sin2.sin4.sin6.sin8..sin88
=sin 45/2^44
Thus,
=1/(√2)*(2^44)
Hence the value of n will be 89/2 for the above equation.
Similar questions
Computer Science,
7 months ago
Social Sciences,
7 months ago
Computer Science,
7 months ago
Economy,
1 year ago
Hindi,
1 year ago
Hindi,
1 year ago