Math, asked by karansinghsaggu, 1 day ago

Find the value of 'n' if: (i) \: {3}^{n - 5} × {6}^{n - 3} = 36 \\ (ii) \: {2}^{n - 4} × {4}^{n - 2} = 16 \\ (iii) \: {5}^{n - 1} × {25}^{n - 2} = 125 \\

Answers

Answered by mathdude500
36

\large\underline{\sf{Solution-(i)}}

Given expression is

\rm \: {3}^{n - 5} × {6}^{n - 3} = 36 \\

can be rewritten as

\rm \: {3}^{n - 5} × {(3 \times 2)}^{n - 3} = 3 \times 3 \times 2 \times 2 \\

\rm \: {3}^{n - 5} × {3}^{n - 3} \times  {2}^{n - 3}  =  {3}^{2} \times  {2}^{2}   \\

We know,

\boxed{ \rm{ \: {x}^{m} \:  \times  \:  {x}^{n} \:  =  \:  {x}^{m + n}  \:  \: }} \\

So, using this result, we get

\rm \: {3}^{n - 5 + n - 3} \times  {2}^{n - 3}  =  {3}^{2} \times  {2}^{2}   \\

\rm \: {3}^{2n - 8} \times  {2}^{n - 3}  =  {3}^{2} \times  {2}^{2}   \\

So, on comparing, we get

\rm \: n - 3 = 2 \\

\rm\implies \:\boxed{ \rm{ \:n \:  =  \: 5 \: }} \\

\large\underline{\sf{Solution-(ii)}}

Given expression is

\rm \: {2}^{n - 4} × {4}^{n - 2} = 16 \\

can be rewritten as

\rm \: {2}^{n - 4} × {( {2}^{2} )}^{n - 2} =  {2}^{4}  \\

\rm \: {2}^{n - 4} × {2}^{2n - 4} =  {2}^{4}  \\

We know,

\boxed{ \rm{ \: {x}^{m} \:  \times  \:  {x}^{n} \:  =  \:  {x}^{m + n}  \:  \: }} \\

So, using this identity, we get

\rm \: {2}^{n - 4 + 2n - 4} =  {2}^{4}  \\

\rm \: {2}^{3n - 8} =  {2}^{4}  \\

So, on comparing, we get

\rm \: 3n - 8 = 4 \\

\rm \: 3n  = 4  + 8\\

\rm \: 3n  = 12\\

\rm\implies \:\boxed{ \rm{ \:n \:  =  \: 4 \: }} \\

\large\underline{\sf{Solution-(iii)}}

Given expression is

\rm \: {5}^{n - 1} × {25}^{n - 2} = 125 \\

can be rewritten as

\rm \: {5}^{n - 1} × {( {5}^{2}) }^{n - 2} =  {5}^{3}  \\

\rm \: {5}^{n - 1} × {5}^{2n - 4} =  {5}^{3}  \\

We know,

\boxed{ \rm{ \: {x}^{m} \:  \times  \:  {x}^{n} \:  =  \:  {x}^{m + n}  \:  \: }} \\

So, using this identity, we get

\rm \: {5}^{n - 1 + 2n - 4} =  {5}^{3}  \\

\rm \: {5}^{3n - 5} =  {5}^{3}  \\

So, on comparing we get

\rm \: 3n - 5 = 3 \\

\rm \: 3n = 3 + 5 \\

\rm \: 3n = 8 \\

\rm\implies \:\boxed{ \rm{ \:n \:  =  \:  \frac{8}{3}  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ {x}^{0}  = 1}\\ \\ \bigstar \: \bf{ {x}^{m} \times  {x}^{n} =  {x}^{m + n} }\\ \\ \bigstar \: \bf{ {( {x}^{m})}^{n}  =  {x}^{mn} }\\ \\\bigstar \: \bf{ {x}^{m}  \div  {x}^{n}  =  {x}^{m - n} }\\ \\ \bigstar \: \bf{ {x}^{ - n}  =  \dfrac{1}{ {x}^{n} } }\\ \\\bigstar \: \bf{ {\bigg(\dfrac{a}{b} \bigg) }^{ - n}  =  {\bigg(\dfrac{b}{a}  \bigg) }^{n} }\\ \\\bigstar \: \bf{ {x}^{m}  =  {x}^{n}\rm\implies \:m = n }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by talpadadilip417
38

Question (i):-

 \text{Given: \( \rm 3^{n-5} \times 6^{n-3}=36 \)}

To find: The value of n

Solution:-

\[ \begin{array}{rlr}  & \rm 3^{n-5} \times 6^{n-3}=36 & \\ \\  \Rightarrow & \rm 3^{n-5} \times(3 \times 2)^{n-3}=36 & \\ \\  \Rightarrow & \rm 3^{n-5} \times 3^{n-3} \times 2^{n-3}=36 & \rm \left((a b)^{m}=a^{m} \times b^{m}\right) \\ \\  \Rightarrow & \rm 3^{n-3}+n-3 \times 2^{n-3}=36 & \rm \left(a^{m} \times a^{n}=a^{m+n}\right) \\ \\  \Rightarrow & \rm 3^{2 n-8} \times 2^{n-3}=36 & \end{array} \]

The R.H.S. cannot be solved any futher. So, we Should break 36 into a product of primes and then comparing the powers we can find the value of n .

\[ \begin{array}{l}  \rm36=2^{2} \times 3^{2} \\ \\  \rm \Rightarrow 3^{2 n-8} \times 2^{n-3}=3^{2} \times 2^{2} \end{array} \]

Comparing L.H.S. and R.H.S., we get two equations:-

\[ \begin{aligned} \rm 2 n-8 & \rm=2 \quad \text { and } \quad n-3=2 \\ \\  \rm 2 n & \rm=10 \quad \text { and } \quad n=5 \\ \\  \rm \Rightarrow \quad n &=5 \end{aligned} \]

Therefore, the value of n from both equations is 5 . Hence, the value of n=5.

Answer (ii):-

 \\  \rm\implies {2}^{n - 4}  \times  {4}^{n - 2}

Convert both sides to the same base.

 \\  \rm\implies {2}^{n - 4}   \times  {2}^{2( n- 2)}  =  {2}^{4}

Use Product Rule: \rm{x}^{a}{x}^{b}={x}^{a+b}

 \\  \rm\implies {2}^{n-4+2(n-2)}={2}^{4}

 \\  \rm\implies \: n−4+2(n−2)=4

 \\  \rm\implies n−4+2n−4=4

 \\  \rm\implies 3n−8=4

 \\  \rm\implies3n=4+8

 \\  \rm\implies 3n = 12

 \\  \rm\implies n=\frac{12}{3}

 \\  \boxed{\red{  \rm\implies \: n = 4}}

Answer (iii):-

\[ \begin{array}{l} \rm 5^{n-1} \times 25^{n-2}=125 \\ \\  \rm \Rightarrow 5^{n-1} \times\left(5^{2}\right)^{n-2}=125 \\ \\  \rm\Rightarrow 5^{n-1} \times 5^{2(n-2)}=125 \\\\  \rm \Rightarrow 5^{n-1} \times 5^{2 n-4}=5^{3} \\ \\  \rm\Rightarrow 5^{(n-1)+(2 n-4)}=5^{3} \end{array} \]

On comparing powers:

\[ \begin{array}{l} \rm \Rightarrow(n-1)+(2 n-4)=3 \\ \\  \rm\Rightarrow n-1+2 n-4=3 \\ \\  \rm \Rightarrow 3 n-5=3 \\ \\  \rm\Rightarrow 3 n=3+5 \\ \\  \rm \Rightarrow 3 n=8 \\ \\  \boxed{ \color{orangered}  \displaystyle \rm\Rightarrow n=\frac{8}{3} }\end{array} \]

Hence, value of n is \rm \dfrac{8}{3}.

Similar questions