Find the value of n such that :
nP5 ,= 42n P3 , n > 4
Answers
Answer:
n = 9, 10
Step-by-step explanation:
⇒ nP5 = 42 × nP3 where, n > 4
⇒ nP5 / nP3 = 42
⇒ nP5 = ( n! ) / ( n - 5 )!
⇒ nP3 = ( n! ) / ( n - 3 )!
We know that,
⇒ ( n - 3 )! = ( n - 3 ) ( n - 4 ) ( n - 5 )!
So substituting this we get,
⇒ nP3 = ( n! ) / ( n - 3 ) ( n - 4 ) ( n - 5 )!
Now Dividing nP5 and nP3 we get,
⇒nP5 / nP3 = ( n! ) / ( n - 5 )! ÷ ( n! ) / ( n - 3 ) ( n - 4 ) ( n - 5 ) ! = 42
Cancelling, ( n! ) and ( n-5 )! we get,
⇒ ( n - 3 ) ( n - 4 ) = 42
Let us consider ( n - 3 ) as x. Then ( n - 4 ) is [ ( n - 3 ) - 1 ] = ( x - 1 )
So, we get,
⇒ x ( x - 1 ) = 42
⇒ x² - x = 42
⇒ x² - 7x + 6x - 42 = 0
⇒ x ( x - 7 ) 6 ( x - 7 ) = 0
⇒ ( x - 7 ) ( x + 6 ) = 0
⇒ x = 7, -6
⇒ n - 3 = 7 ; n - 3 = 6
We know that n > 4. Hence n - 3 = -6 is neglected.
⇒ n - 3 = 7
⇒ n = 7 + 3 = 10
And, n - 4 = n - 3 -1 = 10 - 1 = 9
Hence the possible values of n greater than 4 are 9 and 10.
Hope it helped !!