Math, asked by Archeus, 6 months ago

find the value of other trigonometric ratios given that sin theta is equal to m square minus n square upon m square + n square

ie sin o = m^2-n^2/m^2+n^2​

Answers

Answered by EnchantedBoy
4

\huge\bf\underbrace{☆ANSWER☆}

Solution:

⇒sinФ=(m²-n²)/(m²+n²)

Since sinФ=Perpendicular/Hypotenuse

→H²=B²+P²

→(m²+n²)²=B²+(m²-n²)

→B²=(m²+n²)-(m²-n²)²

→B²=(m²+n²+m²-n²)(m²+n²-m²+n²)

→B=√(2m²ˣ2n²)

→B=2mn

*cosФ=B/H

*secФ=H/B

*cosecФ=H/P

*tanФ=P/B

*cotФ=B/P

⇒cosФ=2mn/(m²+n²)

⇒secФ=(m²+n²)/2mn

⇒cosecФ=(m²+n²)/2mn

⇒tanФ=(m²-n²)/2mn

⇒cotФ=2mn/(m²-n²)

Similar questions