Math, asked by poojithareddypooji20, 1 month ago

find the value of other trigonometric ratios, given that Sino m²-n²/ m²+n²​

Answers

Answered by tennetiraj86
17

Step-by-step explanation:

Given :-

Sin θ = (m²-n²)/(m²+n²)

To find :-

Find the value of other trigonometric ratios ?

Solution :-

Given that

Sin θ = (m²-n²)/(m²+n²) ----------(1)

=> 1/Sin θ = 1/( (m²-n²)/(m²+n²)

=> Cosec θ = (m²+n²)/(m²-n²) --------(2)

On taking equation (1)

Sin θ = (m²-n²)/(m²+n²)

On squaring both sides then

=> (Sin θ)² = [(m²-n²)/(m²+n²)]²

=> Sin² θ = (m²-n²)²/(m²+n²)²

On subtracting the above equation from 1 then

=> 1- Sin² θ = 1-[ (m²-n²)²/(m²+n²)²]

=> Cos² θ = [(m²+n²)²-(m²-n²)²]/(m²+n²)²

Since Sin² A + Cos²A = 1

=>Cos²θ=[(m⁴+2m²n²+n⁴)-(m⁴-2m²n²+n⁴)]/(m²+n²)²

=> Cos²θ = (m⁴+2m²n²+n⁴-m⁴+2m²n²-n⁴)/(m²+n²)²

=>Cos²θ = (2m²n²+2m²n²)/(m²+n²)²

=> Cos²θ = 4m²n²/(m²+n²)²

=> Cos θ =√[4m²n²/(m²+n²)²]

=> Cos θ = √[(2mn)²/(m²+n²)²]

=> Cos θ = √[2mn/(m²+n²)]²

=> Cos θ = 2mn/(m²+n²) ---------(3)

=> 1/Cos θ = 1/[2mn/(m²+n²)]

=> Sec θ = (m²+n²)/(2mn) --------(4)

We know that

Tan θ = Sin θ / Cos θ

=> Tan θ = [ (m²-n²)/(m²+n²)] / [ 2mn/(m²+n²) ]

=> Tan θ = [ (m²-n²)/(m²+n²)] ×[(m²+n²) /(2mn)]

=> Tan θ = [ (m²-n²)(m²+n²)] / [(m²+n²)(2mn)]

=> Tan θ = (m²-n²)/(2mn) ---------(5)

=> 1/ Tan θ = 1/[(m²-n²)/(2mn)]

=> Cot θ = 2mn / (m²-n²) -----------(6)

Answer:-

The values of other trigonometric ratios are:

1) Cos θ = 2mn/(m²+n²)

2) Tan θ = (m²-n²)/(2mn)

3) Cosec θ = (m²+n²)/(m²-n²)

4) Sec θ = (m²+n²)/(2mn)

5) Cot θ = 2mn / (m²-n²)

Used formulae:-

→ Sin² A + Cos²A = 1

→ Tan θ = Sin θ / Cos θ

→ Sec θ = 1/ Cos θ

→ Cosec θ = 1/ Sin θ

→ (a+b)² = a²+2ab+b²

→ (a-b)² = a²-2ab+b²

→ (a/b)^n = a^n / b^n

Similar questions