Math, asked by susheelameena, 9 months ago

Find the value of p^2 + q^2 when p -q = 7 and pq = 9.​

Answers

Answered by tanejakca
9
P-q=7
Square both sides
p^2+q^2-2pq=49
So p^2+q^2= 49+ 18 =67
Answered by Syamkumarr
3

Answer:

the value of p² + q² = 67

Given problem:

Find the value of p² + q² when p - q = 7 and pq = 9.​

Step-by-step explanation:

from given data  p - q = 7  

do squaring on both sides

                     (p - q)² = 7²        

from  (a-b)² = a² + b² - 2ab  

                  p² + q² - 2pq = 49

                  p² + q² = 49 + 2pq

                  p² + q² = 49 + 2(9)      [ ∵ pq = 9 ]

                  p² + q² = 49 + 18 = 67

Answered by Anonymous
1

Given:

p-q=7

pq=9

To find:

p^{2} +q^{2}

Solution:

The required value of (p^{2} +q^{2}) is 67.

We will use the identity mentioned below to obtain the required value-

(p-q)^{2}=p^{2} +q^{2}-2pq

We are given that p-q=7 and pq=9.

We will substitute the values to obtain the required number.

Using the values,

7^{2}=p^{2} +q^{2} -2(9)

49=p^{2} +q^{2}-18

49+18=p^{2} +q^{2}

67=p^{2} +q^{2}

Therefore, the value of (p^{2} +q^{2}) is 67.

Similar questions