Math, asked by oramkabita32, 2 months ago

find the value of p and q​

Attachments:

Answers

Answered by ishansarya
2

Answer:

p = -11/2 and q = -5/2

Step-by-step explanation:

  1. First rationalise the equation you will get
  2.  \frac{22 + 10 \sqrt{5} }{ - 4}
  3. Now jus compare it with p+q√5 you will get p as -11/2 and q as -5/2
Answered by thapamausam01
0

Answer:

p = -\frac{11}{2}    and  q = -\frac{5}{2}  

Step-by-step explanation:

Here ,

          \frac{3 +\sqrt{5} }{4-2\sqrt{5} } =  p+q\sqrt{5}

Then , rationalizing we get;

         \frac{3+\sqrt{5} }{4-2\sqrt{5} } * \frac{4+2\sqrt{5} }{4+2\sqrt{5} } = p+q\sqrt{5}

     \frac{3(4+2\sqrt{5}) +\sqrt{5}(4+2\sqrt{5} ) }{(4)^{2} - (2\sqrt{5} )^{2}} = p +q\sqrt{5}

         \frac{12+6\sqrt{5}+4\sqrt{5}+10  }{16-20 }  = p+q\sqrt{5}

              \frac{22+10\sqrt{5} }{-4} = p+q\sqrt{5}

              22+10\sqrt{5} = -4p-4q\sqrt{5}

Comparing the rational with rational and irrational with irrational , we get

  22 = -4p             and                 q= -\frac{10\sqrt{5} }{4\sqrt{5} }

p=-\frac{22}{4}                                       q = -\frac{10}{4}

p = -\frac{11}{2}                                        q = -\frac{5}{2}     Ans...

Similar questions