Math, asked by kritika10089, 1 year ago

find the value of P and Q for which the following system of equations has infinitely many solutions:
(2p- 1)x + 3y= 5 and 3x+ (q- 1)y=2​

Answers

Answered by MaheswariS
8

\textbf{Given:}

\textsf{The system of equations (2p-1)x+3y=5 and 3x+(q-1)y=2}

\textsf{has infinitely many solutions}

\textbf{To find:}

\textsf{The value of p and q}

\textbf{Solution:}

\underline{\textsf{Concept:}}

\mathsf{If\;the\;equations\;a_1x+b_1y=c_1\;and\;a_2x+b_2y=c_2\;have}

\mathsf{infinitley\;many\;solutions,\;then}

\boxed{\mathsf{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}}}

\textsf{Since the given system of equations have infinitely many solutions,}

\mathsf{\dfrac{2p-1}{3}=\dfrac{3}{q-1}=\dfrac{5}{2}}

\implies\mathsf{\dfrac{2p-1}{3}=\dfrac{5}{2}}

\implies\mathsf{2(2p-1)=15}

\implies\mathsf{4p-2=15}

\implies\mathsf{4p=15+2}

\implies\mathsf{4p=17}

\implies\boxed{\mathsf{p=\dfrac{17}{4}}}

\mathsf{and}

\implies\mathsf{\dfrac{3}{q-1}=\dfrac{5}{2}}

\implies\mathsf{6=(q-1)5}

\implies\mathsf{6=5q-5}

\implies\mathsf{5q=11}

\implies\boxed{\mathsf{q=\dfrac{11}{5}}}

\textbf{Find more:}

Find the value (s) of a for which the system of equations below has infinitely many solutions.( a-3 )x +y = 0 and x+ (a-3)y =0

https://brainly.in/question/16026102

Similar questions