Math, asked by santoshtrading7, 1 year ago

Find the value of p and q if 7-√3/7+√3+7+√3/7-√3=p-q√3


hukam0685: i hope ,i understand your question well

Answers

Answered by rajniagrawal843
11
It's the answer of your question
Attachments:
Answered by hukam0685
25

 \frac{7 -  \sqrt{3} }{7 +  \sqrt{3} }  +  \frac{7 +  \sqrt{3} }{7 -  \sqrt{3} }  = p - q \sqrt{3}
rationalising the denominator or take LCM
 \frac{(7 -  \sqrt{3})(7 -  \sqrt{3}) + (7 +  \sqrt{3})(7 +  \sqrt{3}  )  }{(7 -  \sqrt{3} )(7 +  \sqrt{3}) }
   \frac{ {(7 -  \sqrt{3}) }^{2}  +  {(7 +  \sqrt{3}) }^{2} }{ {7}^{2}  -  { (\sqrt{3} })^{2} }
open the identity
 \frac{49 + 3 - 14 \sqrt{3} + 49 + 3 + 14 \sqrt{3}  }{49 - 3}
 \frac{52 + 52}{46}  =  \frac{104}{46}
so
 \frac{52}{23}
= p-q√3
so value of p= 52/23
q=0
Similar questions