Math, asked by bangtangranger, 8 months ago

Find the value of p and q if \frac{7+\sqrt{5} }{7-\sqrt{5} }  - \frac{7-\sqrt{5}}{7+\sqrt{5} }  = p-7\sqrt{5} q

Answers

Answered by DrNykterstein
2

</p><p> \sf \rightarrow \quad  \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = p - 7 \sqrt{5}q  \\  \\  \sf \rightarrow \quad  \frac{ {(7 +  \sqrt{5} )}^{2} -  {(7 -  \sqrt{5}) }^{2}  }{(7 -  \sqrt{5} )(7 +  \sqrt{5} )}  = p - 7 \sqrt{5}q  \\  \\  \sf \rightarrow \quad  \frac{(7 +  \sqrt{5}  + 7 -  \sqrt{5})(7 +  \sqrt{5}   - 7 +  \sqrt{5}  )}{49 - 5}  = p - 7 \sqrt{5} q \\  \\  \sf \rightarrow \quad  \frac{14(2 \sqrt{5}) }{44}  = p - 7 \sqrt{5} q \\  \\  \sf \rightarrow \quad  \frac{7 \sqrt{5} }{11}  = p - 7 \sqrt{5} q \\  \\  \sf \rightarrow \quad  \frac{14 \sqrt{5} }{11}  -  \frac{7 \sqrt{5} }{11}  = p - 7 \sqrt{5} q \\  \\  \sf \rightarrow \quad  \frac{14 \sqrt{5} }{11}  -  7 \sqrt{5} \cdot \frac{1}{11}   = p - 7 \sqrt{5} q \\  \\  \\ </p><p>

 </p><p></p><p>\sf On \: comparing, \\ \\</p><p>\sf p = \frac{ 14\sqrt{5} }{11} \quad and \quad q = \frac{1}{11}</p><p></p><p>

Answered by BrainlyPopularman
4

Question :

Find the value of p and q if  \\ { \bold{ \dfrac{7+\sqrt{5} }{7-\sqrt{5} } - \dfrac{7-\sqrt{5}}{7+\sqrt{5} } = p-7\sqrt{5} q }} \\

ANSWER :

  \\ \to \:  \:  \:  { \bold{ p =  0 \:  \: , \:  \: q =  -  \frac{1}{11}}} \\

EXPLANATION :

GIVEN :

A relation  { \bold{ \dfrac{7+\sqrt{5} }{7-\sqrt{5} } - \dfrac{7-\sqrt{5}}{7+\sqrt{5} } = p-7\sqrt{5} q }} \\

TO FIND :

Value of p and q.

SOLUTION :

  \\ \implies { \bold{ \dfrac{7+\sqrt{5} }{7-\sqrt{5} } - \dfrac{7-\sqrt{5}}{7+\sqrt{5} } = p-7\sqrt{5} q }} \\

• We should write this as –

  \\ \implies { \bold{ \dfrac{(7+\sqrt{5})^{2}   -  {(7 -  \sqrt{5} )}^{2} } {(7-\sqrt{5})(7 +  \sqrt{5} ) } = p-7\sqrt{5} q }} \\

• We know that –

  \\  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{ (a + b)^{2} =  {a}^{2}   +  {b}^{2}  + 2ac }} \\

  \\  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{ (a  -  b)^{2} =  {a}^{2}   +  {b}^{2}   -  2ac }} \\

  \\  \:  \:  \:  \:  \: . \:  \:  \:  { \bold{ {a}^{2}   -   {b}^{2}   = (a + b)(a - b) }} \\

• So that –

  \\ \implies { \bold{ \dfrac{49 + 5 + 14 \sqrt{5}    -  {(49 + 5 -  14 \sqrt{5} )} } {[ 7^{2} - ( \sqrt{5}) ^{2}] } = p-7\sqrt{5} q }} \\

  \\ \implies { \bold{ \dfrac{54 + 14 \sqrt{5}   -   54  +  14 \sqrt{5}  } {49 - 5 } = p-7\sqrt{5} q }} \\

  \\ \implies { \bold{ \dfrac{28 \sqrt{5}  } {44 } = p-7\sqrt{5} q }} \\

  \\ \implies { \bold{ \dfrac{7 \sqrt{5}  } {11 } = p-7\sqrt{5} q }} \\

• Now let's compare –

  \\ \implies { \boxed { \bold{ p =  0 \:  \: , \:  \: q =  -  \frac{1}{11}}}} \\

Similar questions