Math, asked by sssanjaykshar6649, 2 months ago

find the value of P and Q in
478
1P8
+26Q
=9Q9

Answers

Answered by prashantkumarcoc
0

Answer:

Value of x+\frac{1}{x}=±\sqrt{29}x+

x

1

29

Explanation:

Given x^{2}+\frac{1}{x^{2}}=27x

2

+

x

2

1

=27

\begin{gathered}\implies x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}\\=27+2\times x \times \frac{1}{x}\end{gathered}

⟹x

2

+

x

2

1

+2×x×

x

1

=27+2×x×

x

1

\begin{gathered}\implies x^{2}+\frac{1}{x^{2}}+2\times x \times \frac{1}{x}\\=27+2\end{gathered}

⟹x

2

+

x

2

1

+2×x×

x

1

=27+2

\implies \left(x+\frac{1}{x}\right)^{2}=29⟹(x+

x

1

)

2

=29

___________________________

By algebraic identity:

\boxed {a^{2}+2ab+b^{2}=(a+b)^{2}}

a

2

+2ab+b

2

=(a+b)

2

___________________________

\implies x+\frac{1}{x}=±\sqrt{29}⟹x+

x

1

29

Therefore,

Value of x+\frac{1}{x}=±\sqrt{29}x+

x

1

29

•••••

Similar questions