find the value of p and q so that 1, -2 are the zeros of the polynomial x^3+10x^2+px+q
Answers
Answered by
5
Answer:
Step-by-step explanation:
p(x)=x^3+10x^2+px+q.
x=1 and -2(1 and-2 are zeroes of p(x)).
p(1)=0 and p(-2)=0.
So,p(1)=1^3+10×1^2+p×1+q.
=1+10+p+q.
=11+p+q. -eq(1).
Now,p(-2)=(-2)^3+10×(-2)^2+p×(-2)+q.
=(-8)+40-2p+q.
=32-2p+q. -eq(2).
We know that p(1)=p(-2).
So,11+p+q=32-2p+q.
2p+p=32-11+q-q.
3p=21.
p=21/3
p=7.
Put the value of p in eq(1),
11+p+q=0 (p(1)=0)
11+7+q=0
18+q=0
q=-18.
Hence,p=7 and q=-18.
Rohitguptae:
Please rate it as 5 star
Similar questions