find the value of p and q so that x^4+px^3+2x^2-3x+q is divisible by x^2-1
plzzzzzz answer its urgent
Answers
Answered by
6
Given polynomial,
x⁴+px³+2x²+3x+q
x²-1 divides the given polynomial.
Then x²-1=0
x² = 1
x = √1
x = ±1
Put x=1,
(1)⁴+p(1)³+2(1)²+3(1)+q = 0
1+p+2+3+q = 0
p+q+6 = 0
p+q = -6 -----(1)
Put x= -1,
(-1)⁴+p(-1)³+2(-1)²+3(-1)+q = 0
1 +(-1)p+2-3+q = 0
1-p-1+q = 0
-p+q = 0 --------(2)
(1)+(2)
p+q = -6
-p+q = 0
-------------
2q = -6
q = -6/2
q = -3
p+q = -6
p+(-3)=-6
p-3=-6
p = -6+3
p = -3
Therefore, p = q = -3
Hope it helps
x⁴+px³+2x²+3x+q
x²-1 divides the given polynomial.
Then x²-1=0
x² = 1
x = √1
x = ±1
Put x=1,
(1)⁴+p(1)³+2(1)²+3(1)+q = 0
1+p+2+3+q = 0
p+q+6 = 0
p+q = -6 -----(1)
Put x= -1,
(-1)⁴+p(-1)³+2(-1)²+3(-1)+q = 0
1 +(-1)p+2-3+q = 0
1-p-1+q = 0
-p+q = 0 --------(2)
(1)+(2)
p+q = -6
-p+q = 0
-------------
2q = -6
q = -6/2
q = -3
p+q = -6
p+(-3)=-6
p-3=-6
p = -6+3
p = -3
Therefore, p = q = -3
Hope it helps
Similar questions