Math, asked by splash3, 1 year ago

find the value of P for the quadratic equation (2P+1) x^2 - (7P+2) x +(7P-3) = 0 has equal roots .find these roots .

Answers

Answered by abhi178
14
quadratic equation has equal roots so,
Discriminant D = b² - 4ac = 0
e.g., (7P+2)² - 4(7P-3)(2P+1) = 0

49P² + 4 + 28P - 4{14P² + 7P - 6P -3 } = 0
49P² + 28P + 4 - 56P² -4P + 12 =0
-7P² + 24P + 16 = 0
7P² - 24P - 16 = 0
7P² - 28P + 4P - 16 = 0
(7P + 4)(P - 4) = 0
P = 4 and -7/4
Answered by iraza
41

Answer:

Given : (2p + 1)x² - (7p + 2)x + (7p - 3) = 0 ………(1)

On comparing the given equation with ax² + bx + c = 0  

Here, a = 2p + 1 , b = - (7p + 2) , c = 7p - 3

D(discriminant) = b² – 4ac

D = [- (7p + 2)]² - 4 × (2p + 1) × (7p - 3)

D = [(7p)² + 2²+ 2× 7p× 2) - 4(14p²  + 6p + 7p - 3)

[(a + b)² = a² + b² + 2ab]

D = 49p² + 4 + 28p - 4(14p² + p - 3)

D = 49p² + 4 + 28p - 56 p² - 4 p + 12

D = 49p² - 56 p² + 28p - 4p + 12 + 4

D = - 7p² + 24p + 16  

Given :  Equal roots  

Therefore , D = 0

- 7p² + 24p + 16  = 0

7p² - 24p - 16  = 0

7p² - 28p + 4p - 16  = 0

[By middle term splitting]

7p(p - 4) + 4(p - 4) = 0

(7p + 4) (p - 4) = 0

7p + 4  = 0  or (p - 4) = 0

7p = - 4 or p = 4

p = - 4/7  or p = 4

Hence, the value of p is - 4/7  & 4 .

On putting p = 4 in eq 1 ,

(2p + 1)x² - (7p + 2)x + (7p - 3) = 0

(2 × 4 + 1)x² - (7 × 4 + 2)x + (7 × 4 - 3) = 0

(8 + 1)x² - (28 + 2)x + (28 - 3) = 0

9x² - 30x + 25 = 0

9x² - 15x - 15x + 25 = 0

[By middle term splitting]

3x(3x - 5) - 5(3x - 5) = 0

(3x - 5) = 0  or  (3x - 5) = 0

3x = 5 or 3x = 5

x = 5/3 or x = 5/3

Roots are 5/3 & 5/3

On putting p = - 4/7 in eq 1 ,

(2p + 1)x² - (7p + 2)x + (7p - 3) = 0

(2(- 4/7) + 1)x² - (7(- 4/7) + 2)x + (7( - 4/7) - 3) = 0

(- 8/7 + 1)x² - (- 4 + 2)x + ( - 4 - 3) = 0

[(- 8 + 7)]/7x² - (- 2)x + ( - 7) = 0

[By taking LCM]

- 1/7x²  +  2x  - 7 = 0

(- x² + 2x × 7 - 7 × 7)/7 = 0

[By taking LCM]

-x² + 14x - 49 = 0

x² - 14x + 49 = 0

x² - 7x - 7x + 49 = 0

[By middle term splitting]

x(x - 7) - 7( x - 7) = 0

( x - 7) = 0 or ( x - 7) = 0

x = 7  or  x = 7  

Roots are 7 & 7

Hence, the roots of the equation (2p + 1)x² - (7p + 2)x + (7p - 3) = 0  are 5/3 & 7 .

★★ NATURE OF THE ROOTS

If D = 0 roots are real and equal  

If D > 0 roots are real and distinct

If D < 0  No real roots

Similar questions