Math, asked by 503865, 10 months ago

find the value of 'p' for which -4 is a zero of x^{2} -2x-(7p+3)

Answers

Answered by CharmingPrince
29

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

Find \ the \ value \ of \ 'p ' \ for \ which \ -4 \ is \ a \\ zero \ of \ x^{2} -2x-(7p+3)

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

──────────────────────

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\pink{\tt{Let \ other \ zero \beta}}

\boxed{\red{\bold{Sum \ of \ zeroes:}}}

\red{\implies}-4 + \beta = \displaystyle \frac{-b}{a}

\red{\implies}-4 + \beta = \displaystyle \frac{-(-2)}{1}

\red{\implies}-4 + \beta = 2

\red{\implies}\beta = 2+4 = 6

\boxed{\red{\bold{Product\ of \ zeroes:}}}

\green{\implies}-4 × \beta = \displaystyle \frac{c}{a}

\green{\implies}-4 × 6 = \displaystyle\frac{-7p-3}{1}

\green{\implies}-24 = -7p -3

\green{\implies}7p = 24-3

\green{\implies}7p = 21

\green{\boxed{\implies{\boxed{p =3}}}}

──────────────────────

Similar questions