Math, asked by singhjennie79, 6 days ago

find the value of P for which Quadratic equation x^2+4px+p+2=0 has equal and real roots​

Answers

Answered by suhail2070
0

Answer:

p =  \frac{1 +  \sqrt{33} }{8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \: p =  \frac{1  -  \sqrt{33} }{8} .

Step-by-step explanation:

 {x}^{2}  + 4px + p + 2 = 0 \\  \\ 16 {p}^{2}  - 4(p + 2) = 0 \\  \\ 4 {p}^{2}  - p - 2 = 0 \\  \\ p =  \frac{ - ( - 1) +  \sqrt{1 + 32} }{2 \times 4}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   p =  \frac{ - ( - 1) +  \sqrt{1 + 32} }{2 \times 4}  \\  \\ p =  \frac{1 +  \sqrt{33} }{8}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \: p =  \frac{1  -  \sqrt{33} }{8} .

Similar questions