Math, asked by deekshaguragai, 7 months ago

find the value of p for which the points ( -5,1) (1,p ) , (4,-2) are collinear ​

Answers

Answered by amansharma264
7

EXPLANATION.

→ points are → ( -5,1) , ( 1,p) , ( 4,-2) are collinear.

To find the value of p.

→ if point are collinear → ∆ = 0

 \sf :  \implies \:  x_{1} =  - 5 \: and \:  \:  y_{1} = 1 \\  \\ \sf :  \implies \:  \:  x_{2} = 1 \:  \:  \:and \:  \:  y_{2} = p \\  \\ \sf :  \implies \:  \:  x_{3} = 4 \:  \: and \:  \:  y_{3} =  - 2

 \sf  :  \implies \:  \dfrac{1}{2} [ x_{1}( y_{2} -  y_{3})  +  x_{2}( y_{3} -  y_{1} ) +  x_{3}( y_{1} -  y_{2}  )] \\  \\ \sf  :  \implies \: [ x_{1}( y_{2} -  y_{3})  +  x_{2}( y_{3} -  y_{1} ) +  x_{3}( y_{1} -  y_{2}  )] \:  = 0

→ [ -5 ( p - ( -2)) + 1 ( -2 - 1 ) + 4 ( 1 - p) ] = 0

→ [ -5 ( p + 2 ) + 1 ( -3 ) + 4 ( 1 - p) ] = 0

→ [ -5p - 10 - 3 + 4 - 4p ] = 0

→ [ -9p - 9 ] = 0

→ p = -1

Answered by Anonymous
96
 \begin{array}{|c|c|c|c|c|}1& - 5&1&1 \\ \frac{1}{2} &1&k&1 \\ &4& - 2&1 \end{array} = 0

 \left| \begin{array}{cc} - 5 & 1 & 1 \\ 1 & k & 1 \\ 4 & - 2 & 1 \end{array} \right|

 \blue{ - 5 \Big(k - ( - 2) \Big) - 1(1 - 4) + 1( - 2 - 4k) = 0}

 \red{ - 5 \: (k + 2) \: - 1( - 3) + 1( - 2 + 4k) = 0}

 \red{ - 5k \: - 10 + 3 - 2 - 4k = 0}

 - 9k - 9 = 0

-9k = 9

k = (-9/9)

 \boxed{ \leadsto \red{ \bf k = - 1} }
Similar questions