Math, asked by romanaffan9, 16 hours ago

find the value of p for which the points are colinear if (7,-2),(5,1),(3,p)

Answers

Answered by Abhiram5566
0

Answer:

p = 4

Step-by-step explanation:

Since points are collinear,

so, x₁ ( y₂ - y₃ ) + x₂ ( y₃ - y₁ ) + x₃ ( y₁ - y₂ ) = 0

Now we take ( 7, -2 ) as ( x₁ , y₁ ) ( 5, 1 ) as ( x₂ , y₂ ) and ( 3 , p ) as ( x₃ , y₃ )

⇒ 7 ( 1 - p ) + 5 ( p + 2 ) + 3 ( -2 - 1 ) = 0

⇒ 7 - 7p + 5p + 10 - 6 - 3 = 0

⇒ -7p + 5p + 10 + 7 - 9 = 0

⇒ -2p + 17 - 9 = 0

⇒ -2p + 8 = 0

⇒ -2p = -8

⇒ p = \frac{-8}{-2}

⇒ p = \frac{8}{2}                                                     ∵ minus symbol gets cancelled

                                          p = 4

----------------------------------------------------------------------------------------------

Hope It Helps You ! :D      ^_^

By Abhiram5566

                                MARK ME AS BRAINLIEST ANSWER

----------------------------------------------------------------------------------------------

Similar questions