Find the value of p for which the quadratic equation (2p + 1) x2 - (7 p + 2) x + (7p - 3) = 0
has equal roots. Also find these roots.
Answers
Answered by
0
Answer:
Let's solve for p.
(2p+1)(x2)−(7p+2)(x)+7p−3=0
Step 1: Add -x^2 to both sides.
2px2−7px+x2+7p−2x−3+−x2=0+−x2
2px2−7px+7p−2x−3=−x2
Step 2: Add 2x to both sides.
2px2−7px+7p−2x−3+2x=−x2+2x
2px2−7px+7p−3=−x2+2x
Step 3: Add 3 to both sides.
2px2−7px+7p−3+3=−x2+2x+3
2px2−7px+7p=−x2+2x+3
Step 4: Factor out variable p.
p(2x2−7x+7)=−x2+2x+3
Step 5: Divide both sides by 2x^2-7x+7.
p(2x2−7x+7)
2x2−7x+7
=
−x2+2x+3
2x2−7x+7
p=
−x2+2x+3
2x2−7x+7
Answer:
p=
−x2+2x+3
2x2−7x+7
Similar questions