Math, asked by ronz2005, 10 months ago

Find the value of p, if the following quadratic equation has equal roots
 {4x}^{2}  - (p - 2)x + 1 = 0

Answers

Answered by BrainlyPopularman
14

GIVEN :

 \\  \:  \:  \to \:  \:  \:  \rm A\:  \: quadratic \:  \: equation  \:  \: 4x{}^{2} - (p - 2)x + 1 = 0 \:  \: have \:  \: equal \:  \: roots. \\

TO FIND :

Value of 'p' = ?

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 has equal roots , then Discriminant of quadratic equation will be zero.

 \\  \:  \:  \to \:  \:  \ \rm  \large \: D = 0 \\

• And we know that –

 \\  \:  \:  \to \:  \:  \ \rm  \large \: D =  {b}^{2}  - 4ac \\

• Here –

 \\  \:  \:   \:  \:  \: \to \:  \:  \ \rm  \large a = 4 \\

 \\  \:  \:   \:  \:  \: \to \:  \:  \ \rm  \large b =  - (p - 2) \\

 \\  \:  \:   \:  \:  \: \to \:  \:  \ \rm  \large c =  1 \\

• So that –

 \\  \: \implies  \:  \ \rm  {b}^{2}  - 4ac = 0 \\

 \\  \: \implies  \:  \ \rm  {( - (p - 2))}^{2}  - 4(4)(1) = 0 \\

 \\  \: \implies  \:  \ \rm  { (p - 2)}^{2}  - 16 = 0 \\

 \\  \: \implies  \:  \ \rm  { (p - 2)}^{2}   = 16  \\

 \\  \: \implies  \:  \ \rm  p - 2   =  \sqrt{16}  \\

 \\  \: \implies  \:  \ \rm  p - 2   =  \pm \: 4  \\

Take positive(+) sign :

 \\  \: \implies  \:  \ \rm  p - 2   =  \: 4  \\

 \\  \: \implies  \:  \ \rm  p   =  \: 4 + 2  \\

 \\  \: \implies  \:  \large \rm  p   =  \: 6  \\

Take negative(-) sign :–

 \\  \: \implies  \:  \ \rm  p - 2   =  \: -4  \\

 \\  \: \implies  \:  \ \rm  p   =  \: -4 + 2  \\

 \\  \: \implies  \:  \large \rm  p   =  \: -2  \\

Similar questions