Math, asked by rohanranurlk, 9 months ago

Find the value of p in equation: [ (7p/5) = (p-4) ]

Answers

Answered by ThoughtfulSaint
2

Answer:

 \boxed{\sf p = -10}

Step-by-step explanation:

 \sf Solve \:  for \:  p: \\  \sf \implies  \frac{7p}{5}  = p - 4 \\  \\  \sf Multiply \:  both  \: sides \:  by  \: 5: \\  \sf \implies \frac{5 \times 7p}{5}  = 5(p - 4) \\  \\  \sf \frac{5 \times 7p}{5} =  \cancel{ \frac{5}{5} } \times 7p = 7p :  \\  \sf \implies 7p = 5(p - 4) \\  \\  \sf Expand \:  out  \: terms  \: of  \: the \:  right \:  hand  \: side: \\  \sf \implies 7p = 5p - 20 \\  \\  \sf Subtract  \: 5 p \:  from \:  both \:  sides: \\  \sf \implies 7p -  \boxed{ \sf 5p} = (5p -  \boxed{ \sf 5p}) - 20 \\  \\  \sf 5p - 5p = 0 :  \\  \sf \implies 7p - 5p =  - 20 \\  \\  \sf 7p - 5p = 2p :  \\  \sf \implies  \boxed{ \sf 2p} =  - 20 \\  \\  \sf Divide \:  both  \: sides \:  of  \: 2 p =  - 20  \: by \:  2: \\  \sf \implies  \frac{2p}{2}  =  \frac{ - 20}{2}  \\  \\  \sf \frac{2p}{2}  =  \cancel{ \frac{2}{2} } \times p = p :  \\  \sf \implies p =  \frac{ - 20}{2}  \\  \\ \sf \implies p =   - \frac{ \cancel{2} \times 10}{ \cancel{2}}  \\  \\ \sf \implies p =  - 10

Similar questions