Math, asked by dipshiekha0903, 6 days ago

find the value of p so that each pair of the equation may have one root common.(1) 2x^2+px-1=0 and 3x^2-2x-5=0​

Answers

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Let assume that

\rm \:  \alpha ,\gamma  \: be \: the \: roots \: of {3x}^{2} - 2x - 5 = 0 \\

Consider,

\rm \:  {3x}^{2} - 2x - 5 = 0 \\

\rm \:  {3x}^{2} - 5x + 3x - 5 = 0 \\

\rm \: x(3x - 5) + 1(3x - 5) = 0 \\

\rm \: (x + 1)(3x - 5) = 0 \\

\rm\implies \:x =  - 1 \:  \: or \:  \: x = \dfrac{5}{3}  \\

\rm\implies \:  \gamma   =  - 1 \:  \: or \:  \:   \alpha   = \dfrac{5}{3}  \\ \rm \: or \\ \rm\implies \: \alpha  =  - 1 \:  \: or \:  \:  \gamma  = \dfrac{5}{3}  \\

Now,

Let assume that,

\rm \:  \alpha,  \beta  \: be \: the \: roots \: of \:  {2x}^{2} + px - 1 = 0 \\

We know,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

\rm\implies \: \alpha  +  \beta  =  - \dfrac{p}{2}  \\

Also,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

\rm\implies \: \alpha  \beta  =  - \dfrac{1}{2} \\

It means, we have

\rm\implies \:  \alpha   + \beta =  - \dfrac{p}{2}  \:  \: and \:  \:  \alpha  \beta  =  - \dfrac{1}{2} \\

Case :- 1

\rm \:  \alpha  =  - 1 \\

As, we have

\rm \:  \alpha  \beta  =  -  \dfrac{1}{2}  \\

\rm \: ( - 1)  \beta  =  -  \dfrac{1}{2}  \\

\rm \:\beta  =  \dfrac{1}{2}  \\

Now,

\rm \:  \alpha  +  \beta  =  - \dfrac{p}{2}  \\

\rm \:   - 1  +   \dfrac{1}{2}   =  - \dfrac{p}{2}  \\

\rm \:   - \dfrac{1}{2}   =  - \dfrac{p}{2}  \\

\rm\implies \:p \:  =  \: 1 \\

Now, Consider Case :- 2

\rm \:   \alpha   = \dfrac{5}{3}  \\

As, we have

\rm \:  \alpha  \beta  =  -  \dfrac{1}{2}  \\

\rm \:  \frac{5}{3} \times \beta  =  -  \dfrac{1}{2}  \\

\rm \: \beta  =  -  \dfrac{3}{10}  \\

Now,

\rm \:  \alpha  +  \beta  =  - \dfrac{p}{2}  \\

\rm \: \dfrac{5}{3}  - \dfrac{3}{10}   =  - \dfrac{p}{2}  \\

\rm \: \dfrac{50 - 9}{30}    =  - \dfrac{p}{2}  \\

\rm \: \dfrac{41}{30}    =  - \dfrac{p}{2}  \\

\rm\implies \:p \:  =  \:  -  \:  \dfrac{41}{15}\\

So,

\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\bf{p \:  =  \: 1} \\  \\ &\sf{or}\\ \\  &\bf{p \:  =  \:  -  \:  \dfrac{41}{15} } \end{cases}\end{gathered}\end{gathered}

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by BrainlyButtercup96
70

Answer:

Given:-

The two equations are:-

  • 2x² + px - 1 = 0
  • 3x² - 2x - 5 = 0

It is also given that the two equations may have one root common.

So, first, we have to find the roots of second equation as:

3x²-2x-5=0

»» 3x²+3x-5x-5=0

»» 3x×(x+1)-5×(x+1)=0

»» (x+1) × (3x-5) =0

So, the roots of x for the second equation are,

  • x = -1

or

  • x = 5/3

If we substitute these values of x in the first equation, we can get the possible values of p.

2x²+px-1=0

»» 2×(-1)²+p×(-1)-1=0

»» 2-p-1 = 0

»» p = 1

Or

»» 2×(5/3)² + p×5/3-1 = 0

»» 2×25/9+5p/3=1

»» 50+15p = 9

»» 15p = 9-50

»» p = -41/15

Therefore, the possible values of p are 1 or -41/15 , So that the given two equations may have a common root.

Similar questions