Math, asked by XxxRAJxxX, 4 months ago

Find The value of p.
 \sqrt{10}  =  \sqrt{(4 - 3) ^{2}  + (1 - p)^{2} }
Urgent, Answer Correctly​

Answers

Answered by Anonymous
9

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{ANSWER}}\mid}}}}

 \sqrt{10}  =  \sqrt{(4 - 3) {}^{2}  + (1 - p) {}^{2} }  \\  \sqrt{10}  =  \sqrt{(1) {}^{2} + (1 - p) {}^{2}  }  \\

squaring both sides we get

 (\sqrt{10} ) {}^{2}  = ( \sqrt{(1) {}^{2}  + (1 - p) {}^{2} } ) {}^{2}

10 = 1 + (1 - p) {}^{2}

by using identity (a-b)² = a² + b² + 2ab

10 = 1 + (1 {}^{2}  + p {}^{2}  - 2p) \\ 10 = 1 + 1 + p {}^{2}  - 2p \\ 10 = 2 + p {}^{2}  - 2p \\ p {}^{2} - 2p  - 8 = 0 \\ p {}^{2}  - 4p +2p - 8 = 0 \\ p(p -4) - 2(p - 4) = 0 \\ (p - 4)(p +2) = 0 \\ p =  4 \\ p = -2

so, p = 4, -2

Answered by yourEX
6

Answer:

\therefore \sqrt{10} = \sqrt{(4 - 3) ^{2} + (1 - p)^{2} }

 \implies \sqrt{10} = \sqrt{1 + 1 - 2p - p^{2}}

Squaring both sides,

 \implies 10 = 2 - 2p -  {p}^{2}

\implies  {p}^{2}  - 2p + 8 = 0

 \implies  {p}^{2}  - 2p + 4p + 2 \times 4 = 0

 \implies p(p - 2) + 4(p - 2) = 0

 \implies (p + 4)(p - 2) = 0

 \therefore p + 4  = 0 \\   \implies \: \bf \rm \blue{ p =  - 4 }\\  \therefore \: p - 2 = 0 \\  \implies \bf \rm \: \blue{p = 2}

Hence, Value of p is -4 or 2.

Similar questions