find the value of p which the points (1,2) (p, p) and (-3,-4) are collinear
Answers
Answered by
11
Solution :-
Given
(1,2) (p, p) and (-3, - 4) are collinear
Here, x₁ = 1, y₁ = 2, x₂ = p, y₂ = p, x₃ = - 3, y₃ = - 4
If the points are collinear Area of the triangle = 0
⇒ Area of the triangle = 0
⇒ 1/2 | x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) | = 0
⇒ x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) = 0
⇒ 1 [p - ( - 4 ) ] + p(-4 - 2) + (-3)(2 - p) = 0
⇒ 1( p + 4 ) + p(-6) - 3(2 - p) = 0
⇒ p + 4 - 6p - 6 + 3p = 0
⇒ - 2p - 2 = 0
⇒ - 2p = 2
⇒ p = 2/ - 2 = - 1
Therefore the value of p is -1.
Answered by
15
Let the given points be A(1,2),B(p,p) and C(-3,-4) which are collinear
If the points are collinear,
Slope of AB = Slope of BC
The points would be (1,2),(-1,-1) and (-3,-4)
Similar questions