Math, asked by VISHALKUMARV22, 9 months ago

Find the value of p³-q³ , if p- q = 10/9 and pq = 5/3.​

Answers

Answered by vish143690
11

Answer:

hiii friend good morning ❤️❤️❤️❤️

Here is your answer ✌️✌️✌️✌️

Step-by-step explanation:

p-q = 10/9

cubing on both sides

(p-q)³ = (10/9)³

p³-q³- 3pq (p-q) = 1000/729

p³-q³- 3× (5/3) × (10/9) = 1000/729

p³-q³- 50/9 = 1000/729

p³-q³ = 1000/729 + 50/9

p³-q³ = (1000+405) / 729

p³-q³ = 1405/729

= 1.93

Mark me as Brainliest ❤️❤️❤️❤️

Follow me ✌️✌️✌️✌️

Answered by Anonymous
32
{ \tt{ \red{ \underline{GIVEN- }}}}



{ \sf{ \blue{p - q = \frac{10}{9}}}}



{ \sf{ \blue{pq = \frac{5}{3}}}}



{ \red{ \underline{ \tt{TO \: FIND- }}}}



{ \rightarrow{ \sf{\green{ {p}^{3} - {q}^{3}}}} }



{ \red{ \tt{ \underline{ Solution-}}}}



▪ using the algebraic identity given below...



{ \boxed{ \boxed{ \sf{ \pink{ {a}^{3} - {b}^{3} = (a - b)( {a}^{2} + {b}^{2} +ab)}}}}}



now, at first we have to find the value of



{ \sf{ \rightarrow{ {p}^{2} + {q}^{2} }}}



▪ we know that...



{ \boxed{ \boxed{ \sf{ \pink{ {(a - b)}^{2} = {a}^{2} + {b}^{2} - 2ab}}}}}



using this formula...



{ \sf{ \rightarrow{ {(p - q)}^{2} = {p}^{2} + {q}^{2} - 2pq}}}



{ \sf{ \implies{( { \frac{10}{9}) }^{2} = {p}^{2} + {q}^{2} - (2 \times \frac{5}{3})}}}




{ \sf{ \implies{ \frac{100}{81} = {p}^{2} + {q}^{2} - \frac{10}{3}}}}



{ \implies{ \sf{ {p}^{2} + {q}^{2} = \frac{100}{81} + \frac{10}{3}}}}



{ \sf{ \implies{ {p}^{2} + {q}^{2} = \frac{100 + (10 \times 27)}{81}}}}



{ \sf{ \implies{ {p}^{2} + {q}^{2} = \frac{100 + 270}{81}}}}



{ \sf{ \implies{ {p}^{2} + {q}^{2} = \frac{370}{81}}}}



{ \red{ \sf{ {p }^3-{ q}^{3} = (p - q)( {p}^{2} + {q}^{2} + pq)}}}



now, putting this value in the first formula mentioned above...



{ \implies{ \sf{ {p }^3-{ q}^{3} = \frac{10}{9} ( \frac{370}{81} + \frac{5}{3} )}}}



{ \implies{ \sf{ {p}^3 -{ q}^{3} = \frac{10}{9} ( \frac{370}{81} + \frac{5}{3} )}}}



{ \implies{ \sf{ {p }^3- {q}^{3} = \frac{10}{9} ( \frac{370 +(5 \times 27)}{81} )}}}



{ \implies{ \sf{ {p }^3-{ q}^{3} = \frac{10}{9} ( \frac{370 +135}{81} )}}}



{ \implies{ \sf{ {p}^3 -{ q}^{3} = \frac{10}{9} \times \frac{505}{81} }}}



{ \implies{ \underline{ \boxed{ \sf{ \red{ {p}^3 -{ q}^{3} = \frac{5050}{729}}}}}}}
Similar questions