Math, asked by Reeno, 4 months ago

find the value of parameter a and b for which differential equation is
(ay{x}^{2}  + {y}^{3} )dx + (1  \div 3 {x}^{3}  + bx {y}^{2} )dy
is exact,and then solve it in the case of a and b.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\: ({ayx}^{2} +  {y}^{3})dx  + ( \dfrac{1}{3} {x}^{3} +  {bxy}^{2})dy = 0

On comparing with,

\rm :\longmapsto\:Mdx \:  +  \: Ndy = 0

we get

\rm :\longmapsto\: M \:  =  \: {ayx}^{2} +  {y}^{3}

and

\rm :\longmapsto\:N =   \dfrac{1}{3} {x}^{3} +  {bxy}^{2}

Consider,

\rm :\longmapsto\:\dfrac{\partial \: M}{\partial \: y} =  {ax}^{2} +  {3y}^{2}

and

\rm :\longmapsto\:\dfrac{\partial \: N}{\partial \: x} =  {x}^{2} +  {by}^{2}

Now,

It is given that given Differential equation is exact Differential equation.

\rm :\implies\:\dfrac{\partial \: M}{\partial \: y}  = \dfrac{\partial \: N}{\partial \: x}

\rm :\longmapsto\: {ax}^{2} +  {3y}^{2} =  {x}^{2} +  {by}^{2}

So, on comparing we get,

\rm :\longmapsto\:a = 1 \:  \:  \:  \: and \:  \:  \:  \: b = 3

So,

Given Differential equation is rewritten as

\rm :\longmapsto\: ({yx}^{2} +  {y}^{3})dx  + ( \dfrac{1}{3} {x}^{3} +  {3xy}^{2})dy = 0

Here,

\rm :\longmapsto\: M \:  =  \: {yx}^{2} +  {y}^{3}

and

\rm :\longmapsto\:N =   \dfrac{1}{3} {x}^{3} +  {3xy}^{2}

We know,

Solution of exact Differential equation is given by

\rm :\longmapsto\:\displaystyle\int _{y \: is \: constant} \: Mdx \:  +  \: \displaystyle\int _{term \: not \: containing \: x}Ndy = c

\rm :\longmapsto\:\displaystyle\int _{y \: is \: constant} \: ( {yx}^{2} +  {y}^{3})  dx \:  +  \: \displaystyle\int _{term \: not \: containing \: x}0 \: dy = c

\rm :\longmapsto\:\dfrac{y {x}^{3} }{3}  +  {y}^{3}x  = c

Similar questions