Math, asked by Gowtham9821, 3 months ago

find the value of q when mean is 47​

Attachments:

Answers

Answered by namratayashikany
3

hi hay hello answer is 1/14 sorry am not sure ok...

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Basic Concept :-

There are three methods to find the mean :-

  • 1. Direct Method

  • 2. Short Cut Method

  • 3. Step Deviation Method

Here,

  • We prefer step - deviation method as height of the interval is same and calculations become more easier.

Let's solve the problem now!!

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 0 - 20&\sf 8&\sf10&\sf - 2&\sf - 16\\\\\sf 20 - 40 &\sf 15&\sf30&\sf - 1&\sf - 15\\\\\sf 40-60 &\sf 20&\sf50 -A &\sf0&\sf0\\\\\sf 60 - 80&\sf q&\sf70&\sf1&\sf \: q\\\\\sf 80-100&\sf 5&\sf90&\sf2&\sf10\\\sf \\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Now,

  • we have the values

\rm :\longmapsto\: \sum \: f_i = 48 + q

\rm :\longmapsto\:A \:  =  \: 50

\rm :\longmapsto\:h \:  =  \: 20

\rm :\longmapsto\: \sum \: f_iu_i \:  =  \:  - 21 + q

\rm :\longmapsto\: \overline{x} \:  =  \: 47

Now,

  • On substituting all the above values in the formula,

\rm :\longmapsto\: \overline{x} = A + h \times \dfrac{ \sum \: f_i \: u_i}{ \sum \: f_i}

\rm :\longmapsto\:47 = 50 + 20 \times \dfrac{q - 21}{48 + q}

\rm :\longmapsto\: - 3 = \dfrac{20q - 420}{48 + q}

\rm :\longmapsto\: - 144 - 3q = 20q - 420

\rm :\longmapsto\:23q = 276

\bf\implies \:q \:  =  \: 12

Additional Information :-

1. Mean using Direct Method :-

\dashrightarrow\sf Mean \:  \:  \overline{x} = \dfrac{ \sum f_i x_i}{ \sum f_i}

2. Mean using Short Cut Method :-

\rm :\longmapsto\: \overline{x} = A + \dfrac{ \sum \: f_i \: d_i}{ \sum \: f_i}

Similar questions