Physics, asked by StrongGirl, 7 months ago

Find the value of r for equilibrium position?

Attachments:

Answers

Answered by Ekaro
14

Answer :

Potential energy in a field is given by

\dag\:\boxed{\bf{U=-\dfrac{A}{r^6}+\dfrac{B}{r^{11}}}}

We have to find the value of r at equilibrium position.

◈ We know that in equilibrium position, net force acts on the particle = zero.

For conservative force, \bf{F=-\dfrac{dU}{dr}}

:\implies\sf\:-\dfrac{dU}{dr}=0

:\implies\sf\:-{\huge(}-\dfrac{A}{r^6}+\dfrac{B}{r^{11}}{\huge{)}}\:\dfrac{1}{dr}=0

:\implies\sf\:-(-Ar^{-6}+Br^{-11})\:\dfrac{1}{dr}=0

:\implies\sf\:\dfrac{Ar^{-6}}{dr}-\dfrac{Br^{-11}}{dr}=0

:\implies\sf\:(-6Ar^{-7})-(-11Br^{-12})=0

:\implies\sf\:\dfrac{11B}{r^{12}}=\dfrac{6A}{r^{7}}

:\implies\sf\:\dfrac{r^{12}}{r^7}=\dfrac{11B}{6A}

:\implies\sf\:r^{5}=\dfrac{11B}{6A}

:\implies\boxed{\bf{\purple{r={\huge(}\dfrac{11B}{6A}{\huge)}^{\frac{1}{5}}}}}

Cheers!

Similar questions