Math, asked by royniraj17, 8 months ago

find the value of rod a-b if 8+3 root 7/8-3 root 7- 8-3 root 7/8+3 root7=a-root7

Answers

Answered by shokeennikita40
2

Answer:

HELLO.....FRIEND!!

THE ANSWER IS HERE,

= > \: \frac{3 + \sqrt{7} }{3 - \sqrt{7} }=>

3−

7

3+

7

= > \: \frac{3 + \sqrt{7} }{3 - \sqrt{7} } \times \frac{3 + \sqrt{7} }{3 + \sqrt{7} }=>

3−

7

3+

7

×

3+

7

3+

7

= > \: \: \frac{( {3 + \sqrt{7} )}^{2} }{ {3}^{2} - { \sqrt{7} }^{2} }=>

3

2

7

2

(3+

7

)

2

= > \: \frac{9 + 7 + 6 \sqrt{7} }{2}=>

2

9+7+6

7

= > \: \frac{16 + 6 \sqrt{7} }{2}=>

2

16+6

7

= > \: 8 + 3 \sqrt{7} .=>8+3

7

.

From the question,

= > \: 8 + 3 \sqrt{7} = a + b \sqrt{7}=>8+3

7

=a+b

7

= > \: a = 8 \:=>a=8

= > \: b = 3.=>b=3.

:-)Hope it helps u.

Similar questions