find the value of rod a-b if 8+3 root 7/8-3 root 7- 8-3 root 7/8+3 root7=a-root7
Answers
Answered by
2
Answer:
HELLO.....FRIEND!!
THE ANSWER IS HERE,
= > \: \frac{3 + \sqrt{7} }{3 - \sqrt{7} }=>
3−
7
3+
7
= > \: \frac{3 + \sqrt{7} }{3 - \sqrt{7} } \times \frac{3 + \sqrt{7} }{3 + \sqrt{7} }=>
3−
7
3+
7
×
3+
7
3+
7
= > \: \: \frac{( {3 + \sqrt{7} )}^{2} }{ {3}^{2} - { \sqrt{7} }^{2} }=>
3
2
−
7
2
(3+
7
)
2
= > \: \frac{9 + 7 + 6 \sqrt{7} }{2}=>
2
9+7+6
7
= > \: \frac{16 + 6 \sqrt{7} }{2}=>
2
16+6
7
= > \: 8 + 3 \sqrt{7} .=>8+3
7
.
From the question,
= > \: 8 + 3 \sqrt{7} = a + b \sqrt{7}=>8+3
7
=a+b
7
= > \: a = 8 \:=>a=8
= > \: b = 3.=>b=3.
:-)Hope it helps u.
Similar questions