Math, asked by kartiknegi1214, 1 month ago

find the value of root 3 + root 5 upon 3 minus root 5 if root 5 equals to 2.236​

Attachments:

Answers

Answered by biplabmandal321
3

Answer:

 \sqrt{ \frac{(3 +  \sqrt{5}) {}^{2}  }{9 - 5} } \\  =  \frac{3 +  \sqrt{5} }{2}  \\  =  \frac{3 + 2.236}{2}  \\  =  \frac{5.236}{2}

Answered by RISH4BH
77

Answer:

\qquad\boxed{\red{\sf \sqrt{\dfrac{(3+\sqrt5)}{(3-\sqrt5)}} = 2.618 }}

Step-by-step explanation:

Given that the value of √5 is 2.236 . And we need to find out the value of given irrational number .The given number is ,

\sf\dashrightarrow \sqrt{\dfrac{3+\sqrt5}{3-\sqrt5}}

  • Firstly we will rationalise the denominator by Multiplying the denominator with its conjugate irrational number . Since 3-√5 is present in the denominator , we will multiply it by 3+√5 .

\sf\dashrightarrow \sqrt{\dfrac{(3+\sqrt5)(3+\sqrt5)}{(3-\sqrt5)(3+\sqrt5)}}

  • Now we can simply the denominator using the formula ,

\sf\dashrightarrow\red{ a^2-b^2= (a+b)(a-b)}

So that ,

\sf\dashrightarrow \sqrt{\dfrac{(3+\sqrt5)(3+\sqrt5)}{(3)^2-(\sqrt5)^2}}

\sf\dashrightarrow \sqrt{\dfrac{(3+\sqrt5)^2}{9-5}}

\sf\dashrightarrow \sqrt{\dfrac{(3+\sqrt5)^2}{4}}

  • Now we can write 4 as 2² and the numerator has (3+√5)² . Hence on simplyfing the square root , we have ,

\sf\dashrightarrow \sqrt{\dfrac{(3+\sqrt5)^2}{2^2}}

\sf\dashrightarrow \dfrac{3+\sqrt5}{2}

  • Now substituting the given value of √5 , we have ,

\sf\dashrightarrow \dfrac{3+2.236}{2}

\sf\dashrightarrow \dfrac{5.236}{2}

\sf\dashrightarrow \boxed{\pink{\sf 2.618 }}

Hence the required answer is 2.618 .

\rule{200}6

\tiny\qquad\qquad\qquad\qquad\boxed{\red{ \textsf{\textbf{ Hence  the required answer is 2.618 .}}}}

\rule{200}6

Similar questions