find the value of root x-1/root x if x= 2+root 3
Answers
Answer:
The value of \sqrt x - \frac{1}{\sqrt x} is 2.
Step-by-step explanation:
Given:
if x=3+2 root 2, find the value of root x-1/root x
Solution:
x = 3 + 2 \sqrt2
= 1 + 2\sqrt2 + 2
=(1 + \sqrt2)2
\sqrt x = 1+ \sqrt2
\sqrt x - \frac{1}{\sqrt x} = (1 + \sqrt2) - \frac{1}{(1 + \sqrt2)}
After simplification, we get
\sqrt x - \frac{1}{\sqrt x} = 2 \frac{(1 + \sqrt2)}{(1 + \sqrt2)}
\sqrt x - \frac{1}{\sqrt x} = 2
PLEASE MARK ME THE BRAINLIEST
Answer :
√x - 1/√x = √6
Solution :
Given : x = 2 + √3
To find : √x - 1/√x = ?
We have , x = 2 + √3
Thus ,
=> 1/x = 1/(2 + √3)
=> 1/x = (2 - √3) / (2 + √3)•(2 - √3)
=> 1/x = (2 - √3) / [ 2² - (√3)² ]
=> 1/x = (2 - √3) / (4 - 3)
=> 1/x = (2 - √3) / 1
=> 1/x = 2 - √3
Now ,
=> (√x - 1/√x)² = (√x)² - 2•√x•(1/√x)+(1/√x)²
=> (√x - 1/√x)² = x + 2 + 1/x
=> (√x - 1/√x)² = 2 + √3 + 2 + 2 - √3
=> (√x - 1/√x)² = 6
=> (√x - 1/√x) = √6