Math, asked by joshwathomas05, 8 months ago

Find the value of s28– 2s27+ s26​

Answers

Answered by pulakmath007
15

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

Let in an arithmetic progression

First term = a

Common Difference = d

Then sum of first n terms

 \displaystyle \: S_n =  \frac{n}{2} \bigg[ 2a + (n - 1)d \bigg]

TO DETERMINE

S_{28} - 2 \times S_{27} + S_{26}

EVALUATION

Let in an arithmetic progression

First term = a

Common Difference = d

 \displaystyle \: S_{26} =  \frac{26}{2} \bigg[ 2a + (26 - 1)d \bigg]

 \implies \:  \displaystyle \: S_{26} =  13\bigg[ 2a + 25d \bigg]  = 26a + 325d

 \displaystyle \: S_{27} =  \frac{27}{2} \bigg[ 2a + (27 - 1)d \bigg]

  \implies \: \displaystyle \: S_{27} =  \frac{27}{2} \bigg[ 2a + 26d \bigg]

 \displaystyle \: S_{28} =  \frac{28}{2} \bigg[ 2a + (28 - 1)d \bigg]

  \implies \: \displaystyle \: S_{28} = 14 \bigg[ 2a + 27d \bigg]  = 28a + 378d

Hence

S_{28} - 2 \times S_{27} + S_{26}

\displaystyle \: = 28a + 378d - 27(2a + 26d) +( 26a + 325d)

 = 54a + 703d - 54a - 702d

 = d

RESULT

 \sf \: {S_{28} - 2 \times S_{27} + S_{26} = common \: difference \: of \: the \:AP \:  }

Similar questions