Math, asked by vikas602, 11 months ago

find the value of sec^2 - 1/ cot^2a​

Answers

Answered by Anonymous
2

Step-by-step explanation:

sec^2-1/cot^2a

we know that sec^2a-1 = tan^2a

replace it with tan

tan^2a/cot^2a

sin^2a/cos^2a whole divide by cos^2a/ sin^2a

then it comes sin^a/cos^2a×sin^2a/cos^2a

Answered by Anonymous
3

YOUR QUESTION :----

 { \sec}^{2}  -  \frac{1}{ { \cot}^{2} a}

And Your Answer is :---

( { \sec }^{2} = \frac{1}{ { \cos }^{2} } )

( { \cot }^{2} =  \frac{ { \sin }^{2} }{ { \cos }^{2} } )

 \frac{1}{ { \cos }^{2} }  -    \frac{ { \sin }^{2} }{ { \cos }^{2} }

 \frac{1 -  { \ \sin }^{2} }{ { \cos}^{2} }

 \frac{ { \cos}^{2} }{ { \cos }^{2} }  = 1 \: is \: the \: answer

Similar questions