Math, asked by ska67246, 9 months ago

Find the value of sec^2 20-cot^2 70÷sin^2 70+sin^2 20.

Answers

Answered by aaravs618gmailcom
1

Answer:

sin20

o

sin40

o

sin60

o

sin80

o

=sin(60

o

−20

o

)sin20

o

sin(60

o

+20

o

)sin60

o

=

4

1

sin(3×20

o

)sin60

o

=

4

1

sin

2

60

o

=

16

3

(∵sin(60−θ)sin(60+θ)sinθ=

4

1

sin3θ)

k=3

Answered by saidhumal29
0

Answer:

= 1

Step-by-step explanation:

We have,

\dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

sin

2

70+sin

2

20

sec

2

20−cot

2

70

To find, the value of \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

sin

2

70+sin

2

20

sec

2

20−cot

2

70

= ?

∴ \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

sin

2

70+sin

2

20

sec

2

20−cot

2

70

= \dfrac{\sec^2 20-\cot^2 (90-20)}{\sin^2 70+\sin^2 (90-70)}

sin

2

70+sin

2

(90−70)

sec

2

20−cot

2

(90−20)

Using the trigonometric identity,

\tan AtanA = \cot (90-A)cot(90−A) and

\cos AcosA = \sin (90-A)sin(90−A)

= \dfrac{\sec^2 20-\tan^2 20}{\sin^2 70+\cos^2 70}

sin

2

70+cos

2

70

sec

2

20−tan

2

20

Using the trigonometric identity,

\sec^2 Asec

2

A - \tan^2 Atan

2

A = 1 and

\sin^2 Asin

2

A + \cos^2 Acos

2

A = 1

= \dfrac{1}{1}

1

1

= 1

∴ \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

sin

2

70+sin

2

20

sec

2

20−cot

2

70

= 1

Thus, the value of \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

sin

2

70+sin

2

20

sec

2

20−cot

2

70

is equal to "one (1)".

Similar questions