Math, asked by shasikalab62093, 1 year ago

find the value of sec2 20 minus cot2 70 divided by sin2 70 plus sin2 20​

Answers

Answered by sanjeevgautam1358
1

Step-by-step explanation:

quite quite easily done mark it as brilliance answer

Attachments:
Answered by jitumahi435
1

\dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20} = 1

Step-by-step explanation:

We have,

\dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

To find, the value of \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20} = ?

\dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20}

= \dfrac{\sec^2 20-\cot^2 (90-20)}{\sin^2 70+\sin^2 (90-70)}

Using the trigonometric identity,

\tan A = \cot (90-A) and

\cos A = \sin (90-A)

= \dfrac{\sec^2 20-\tan^2 20}{\sin^2 70+\cos^2 70}

Using the trigonometric identity,

\sec^2 A - \tan^2 A = 1 and

\sin^2 A + \cos^2 A = 1

= \dfrac{1}{1}

= 1

 \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20} = 1

Thus, the value of \dfrac{\sec^2 20-\cot^2 70}{\sin^2 70+\sin^2 20} is equal to "one (1)".

Similar questions