Find the value of (sec2 theta-1) (1-cosec2 theta)
Answers
Answered by
44
(sec^2 theta-1)(1-cosec^2theta)
=tan^2 theta×(-cot^2 theta)
{since sec^2 theta-1=tan^2 theta and 1-cosec^2 theta= -cot^2 theta}
=tan^2 theta×(-1)/tan^2 theta
= - 1
=tan^2 theta×(-cot^2 theta)
{since sec^2 theta-1=tan^2 theta and 1-cosec^2 theta= -cot^2 theta}
=tan^2 theta×(-1)/tan^2 theta
= - 1
Answered by
12
Given :
The Trigonometrical equation
( Sec²Ф - 1 ) ( 1 - Cosec²Ф )
To Find :
The value of ( Sec²Ф - 1 ) ( 1 - Cosec²Ф )
Solution :
As ( Sec²Ф - 1 ) ( 1 - Cosec²Ф )
The equation can be written as
( Sec²Ф - 1 ) [ - ( Cosec²Ф - 1 ) ]
∵ Sec²Ф - 1 = Tan²Ф ......1
And
Cosec²Ф - Cot²Ф = 1
Or, Cosec²Ф - 1 = Cot²Ф .........2
So, From given equation, substitute the values
i.e ( Sec²Ф - 1 ) ( 1 - Cosec²Ф ) = ( Tan²Ф ) ( - Cot²Ф ) ..........3
Again
'∵ TanФ =
So, ( ) ( - Cot²Ф ) ( eq 3 )
=
( Sec²Ф - 1 ) ( 1 - Cosec²Ф ) = 1
So, the value of ( Sec²Ф - 1 ) ( 1 - Cosec²Ф ) = - 1
Hence, The value of ( Sec²Ф - 1 ) ( 1 - Cosec²Ф ) is - 1 . Answer
Similar questions