Math, asked by gangatrichandil, 7 months ago

find the value of sec45/ cos45+ cosec45/sin45​

Answers

Answered by Anonymous
4

Answer:

 {\huge{\boxed{\orange{\text{Correct Answer Is 4}}}}}

Step-by-step explanation:

 {\red{\text{sec45°/cos45° + cosec45°/sin45°}}}

⇒ 1/cos45°•cos45° + 1/sin45°•sin45°

⇒ 1/[1/√2•1/√2] + 1/[1/√2•1/√2]

⇒ 2 + 2

⇒ 4

Answered by REDPLANET
52

\underline{ \boxed {\bold {Question}}}

  • \frac{sec45^{.} }{cos45^{.}} + \frac{cosec45^{.} }{sin45^{.}} = \:?

\underline{ \boxed {\bold {Important \: identities \: to \: be \: remembered}}}

  • sin²Ф + cos²Ф = 1
  • sinФ = 1/cosecФ
  • cosФ = 1/secФ

\underline{ \boxed {\bold {Answer}}}

= \frac{sec45^{.} }{cos45^{.}} + \frac{cosec45^{.} }{sin45^{.}} \\\\= \frac{1 }{cos^{2}45} + \frac{1 }{sin^{2}45} \\\\= \frac{sin^{2}45 + cos^{2}45}{cos^{2}45\times sin^{2}45} \\\\= \frac{1}{\frac{1}{2} \times \frac{1}{2} } \\\\= 4

∴ Value of expression = 4

Similar questions