Math, asked by ashwin4166, 1 year ago

Find the value of sec45 geometrically. Hence find sin 45 and cos 45 ?

Answers

Answered by yogeshyaman
1
Sin45 = cos45 = 1/squareroot(2)
Answered by tardymanchester
5

Answer:

\sec 45=\sqrt2

\sin 45=\frac{1}{\sqrt2}

\cos 45=\frac{1}{\sqrt2}

Step-by-step explanation:

To find : The value of \sec 45 geometrically?

Solution :    

Consider a right angle triangle ABC with sides AB=BC=a

\angle A=\angle C=45^\circ and \angle B=90^\circ

In triangle ABC, Apply Pythagoras theorem,

AC^2=AB^2+BC^2

AC^2=a^2+a^2

AC^2=2a^2

AC=a\sqrt2

So, Perpendicular P=a , Base B=a , Hypotenuse H=a\sqrt2

\sec 45=\frac{H}{P}

\sec 45=\frac{a\sqrt2}{a}

\sec 45=\sqrt2

Similarly,

\sin 45=\frac{P}{H}

\sin 45=\frac{a}{a\sqrt2}

\sin 45=\frac{1}{\sqrt2}

\cos 45=\frac{B}{H}

\cos 45=\frac{a}{a\sqrt2}

\cos 45=\frac{1}{\sqrt2}

Similar questions