Math, asked by khurshedhacker196, 1 year ago

Find the value of secA/cotA+tanA

Answers

Answered by Anonymous
8

\huge{\textsf{\underline{\underline{SOLUTION:-}}}}

 \frac{ \sec(a) }{ \cot(a) +  \tan(a)  }

 \frac{ \frac{1}{ \cos(a) } }{ \frac{ \frac{}{ \cos(a) } }{ \sin(a) } +  \frac{ \sin(a) }{ \cos(a) }  }

 \frac{ \frac{1}{ \cos(a) } }{ \frac{ \cos( {a}^{2} )  +  \sin( {a}^{2} ) } { \sin(a) \cos(a)  } }

 \frac{ \frac{1}{ \cos(a) } }{ \frac{1}{ \sin(a) \cos(a)  } }

 \sin(a)

\huge{\texttt{STEPS:-}}

1)Firstly , transform the expressions

2)Write all numerators above the common denominator

3)Simplify the expression

4)Simplify the fraction

5)Final solution is sin(a)

6) Here 'a' is 'A' in the solution

Answered by pradeep5080
1

Answer:

cot(a)+tan(a)

sec(a)

\frac{ \frac{1}{ \cos(a) } }{ \frac{ \frac{}{ \cos(a) } }{ \sin(a) } + \frac{ \sin(a) }{ \cos(a) } }

sin(a)

cos(a)

+

cos(a)

sin(a)

cos(a)

1

\frac{ \frac{1}{ \cos(a) } }{ \frac{ \cos( {a}^{2} ) + \sin( {a}^{2} ) } { \sin(a) \cos(a) } }

sin(a)cos(a)

cos(a

2

)+sin(a

2

)

cos(a)

1

\frac{ \frac{1}{ \cos(a) } }{ \frac{1}{ \sin(a) \cos(a) } }

sin(a)cos(a)

1

cos(a)

1

\sin(a)sin(a)

Similar questions