Find the value of secA/cotA+tanA
Answers
Answered by
8
1)Firstly , transform the expressions
2)Write all numerators above the common denominator
3)Simplify the expression
4)Simplify the fraction
5)Final solution is sin(a)
6) Here 'a' is 'A' in the solution
Answered by
1
Answer:
cot(a)+tan(a)
sec(a)
\frac{ \frac{1}{ \cos(a) } }{ \frac{ \frac{}{ \cos(a) } }{ \sin(a) } + \frac{ \sin(a) }{ \cos(a) } }
sin(a)
cos(a)
+
cos(a)
sin(a)
cos(a)
1
\frac{ \frac{1}{ \cos(a) } }{ \frac{ \cos( {a}^{2} ) + \sin( {a}^{2} ) } { \sin(a) \cos(a) } }
sin(a)cos(a)
cos(a
2
)+sin(a
2
)
cos(a)
1
\frac{ \frac{1}{ \cos(a) } }{ \frac{1}{ \sin(a) \cos(a) } }
sin(a)cos(a)
1
cos(a)
1
\sin(a)sin(a)
Similar questions